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ROOTS OF POLYNOMIALS BY RATIO OF SUCCESSIVE DERIVATIVES
by James E. Crouse and Charles W. Putt

Lewis Research Center

SUMMARY

Computer programs for finding roots of polynomials often give unsatisfactory an-
swers where roots relatively close together are encountered. This difficulty to a large
extent can be avoided with a procedure utilizing ratios of successive derivatives. The
specific information gained from the ratio of successive derivatives is the number of
roots at the root point approached and the approximate location of a trail point with re-
spect to the closest root. The location approximation improves as a root is approached
so a powerful convergence procedure becomes available.

Equations are developed in this report for the general case of polynomials with com-
plex number coefficients. Stepwise procedures are given for obtaining accurate roots
for the general case. These principles are developed into a computer program which
finds the real and complex number roots of polynomials for the special case of real
number coefficients. Some examples are shown to illustrate the root resolution capabil-
ity of the program.

INTRODUCTION

High-speed computing has made some formerly laborious mathematical procedures,
such as solving for the roots of rather high degree polynomials, somewhat more prac-
tical for broad engineering application. Before the prominence of computers the solu-
tion of high degree polynomials for roots had an element of art to complement the sci-
ence. The solution of general polynomials on computers, however, requires completely
logical steps. Many methods have been developed and programmed for general use
(e.g., refs. 1 and 2). Almost all of these programs use iterative procedures and re-
quire the evaluation of the polynomial at each trial root. Most of the programs work
well for the vast majority of cases; however, they usually either compute an inaccurate
solution or fail to converge to a solution for some root combinations. These difficulties
are usually caused by multiple roots at a point or by two or more very close roots.



Since roots are defined as the points for which a polynomial equals zero, iterative
root finding techniques search for points that give a polynomial value of zero. When
roots are not close together a polynomial will have significant slope at a root; so a tol-
erance of the closeness of the polynomial to zero can be and effectively is used as a
root criterion. However, when roots are very close together or when multiple roots
occur at a point, the polynomial approaches these roots at very nearly zero slope. With
these low slopes, very poor root resolution capability is possible with a polynomial-
equal-zero tolerance criterion. And in some cases, programs fail to converge at all.
In most cases of failure, either the polynomial cannot be evaluated near a root with suf-
ficient accuracy or the polynomial value over large domains of the complex plane is
outside the range of numbers representable on a computer. Thus, it appears that knowl~
edge about the relative closeness of the approached root to other roots is needed for
more comprehensive root finding computer programs.

Polynomial derivatives give a clue as to the nature of the root or roots approached.
In fact, the ratios of successive polynomial derivatives give the following very useful
information: (1) the multiplicity of a root; that is, the number of roots at the root point
approached, (2) the closeness of a trial point to the root approached, and (3) a good ap-
proximation as to where the next nearest root is when at a root. Thus, an approach
using the ratios of successive polynomial derivatives offers the possibility of accurate
roots-of-polynomial computer programs with very high reliability.

In this report the general principles of what can be learned from the ratios of poly-
nomial derivatives (including polynomials with complex number constants) is presented
and discussed. Then these principles are used in a computer program which finds the
roots of polynomials for the special case of real number coefficients. The program is
included in the report along with examples of input, output, and resolution capabilities.

DEVELOPMENT OF THE GENERAL METHOD
General Procedure

In the following development of equations, the polynomial is assumed to be of the
general form. (Symbols are defined in appendix A.)

P(z):ao+a1z+a2z2+a3z3+. .. +a].zj+. . .auz (1)

where the variable z and the constants aj for j=0 to n are complex numbers in the
general case. The polynomial in terms of its roots can be written as

P(z) = (z - bl)(z - bz)(z - b3) e .. (z- bj) .. (z- bn) (2)



Equations (1) and (2) are always analytic. Thus, a derivative always exists, and it has
the same value at a point independent of the direction of approach.
The first derivative of equation (2) is

P'2) = {[(z - bz - bg) . . . (2 -b)] + [(z -by)z -bg) . . . (z-b)]
+. ..+ [2-Dz -by) . . . (z-by_]] (3)

The first derivative ratio is formed by dividing equation (3) by equation (2); the re-
sult is

Pa) g o1, 1 , 1 , ., 1 (4)

P(z) z-b1 z - by z-b3 z-bn
Equation (4) has n terms, but note that as a root is approached a few or usually only
one term will predominate. If only one term predominates, equation (4) can be approxi-
mated by

P'(Z) - fl ~ 1 (5)

at a trial z in the vicinity of bj' Equation (5) then can be solved for b. to give a much
closer z approximation to the root in the next iteration. As z gets closer to b,, the
predominance of the one term in equation (4) becomes increasingly outstanding. Thus,

it is possible to close in on the root point very rapidly.

The value of knowing z - b]- near a root has been indicated; but so far, only the
special case of a point near a single root has been covered. For the general case of
arbitrary z in P(z), z may not be relatively close to any one root point so no one
term in equation (4) predominates. Another less common possibility is the nearest root
point may have multiple roots m, so that m terms in equation (4) sum to m/(z - bj).
Thus, for general analysis, f; can be expressed as

Plz) f=-2 g (6)
P(2) z - bj
where b, is the closest root, m is number of roots at bj, and g1 is the sum of the
rest of the terms, (n - m), in equation (4). Information about m and g1 is needed
before a value of bj can be calculated from equation (6).

More information about m and gy can be obtained from equations involving higher

order derivative ratios. The development of these equations, however, becomes more



complicated as the order of the derivative increases; so the stepwise derivations through
the fourth derivative are shown in appendix B. Particular equations developed there will
be drawn into the text as needed.

The second derivative ratio (eq. (B10)) is

mm-y 28 2
(Z -b )2 zZ - b.
P"(Z)___ ] ]

P'(z) m

(7

This is another equation in m, g1 and a new variable 295 which is a summation of
terms of the form 1/(z - b].) for all b. values exclusive of the nearest root points.
The introduction of the new variable indicates that more equations of this type will not
give a set that can reasonably be solved in a direct mathematical way. Much implicit
information, however, can be obtained from an order of magnitude study of the terms
in the derivative ratios.

Order of Magnitude Studies of Derivative Ratios

Let us begin by observing what happens to the first and second derivative ratios
(egs. (6) and (7)) as a single root (m = 1) is approached. First note that as z — bj in
equation (6), P'(z)/P(z) - #co.

Now consider equation (7). The first term in the numerator is zero since m = 1.

As z - bj’ equation (7) essentially reduces to

ngl
' z - b,
Pz) 1 = Zgl (8)
P'(z) m
z - b.

]

Thus, as z - bj for m =1, the second derivative ratio approaches Zgl, which will be
virtually a constant for small z changes near b.. Consequently, for m = 1, the first
derivative ratio increases in magnitude rapidly and the second derivative ratio ap-
proaches 2g1 as z — bj'

Now let us consider the case of m > 1. The first derivative ratio still approaches

doo AS Z — bj‘ But, in this case equation (7) essentially reduces to




m(m - 1)

2
P''(z) ~ (z - b]) _m - 1
P'(z) m z-b

z-b].

(9)

Thus the second derivative ratio also approaches +» as z — b, for m > 1. In fact,
the ratio between the magnitude of the second and first derivative ratios is (m - 1)/m
for m > 1,

At this point the third derivative ratio is lifted from the appendix (eq. (B15)) to show
the following pattern that is developing:

2
_ _ 3m(m - l)g 3m(g7 - g
m(m - H)(m - 2) , 1, (e1 2) . g? - 3g,8, + 28,

P'"(Z) (Z - bj)3 (Z - bj)z z- b] (10)
1
P'(z) m(m—1)+2mg1_'_g2_g
2 z-D, 1 2
(z - b]) ]
Consider the case of m =2. As z — b:i equation (10) essentially reduces to
3m(m - l)g1
2
ey (z - by)

PE) - 3g, (11)

P''(z) m(m - 1)
(z - by)?

As z- b; for m = 2, the third derivative ratio approaches 3gy- ¥ m > 2,
P'"(z)/P'"(z) = (m - 2)/(z - bj) as z - bj'

Analysis of higher derivative ratios confirms the pattern indicated previously. The
following generalizations can be made as z approaches b.:

(1) The constant approached by the m + 1 derivative ratio is (m + l)gl.

2) P¥*l(2)/PX(2) = (m + 1 - W /(z - b;) ~ 0 for 1=k=m, so the number of
derivative ratios that approach =+ is the number of roots m that are at b]..

(3) For m > 1 and an integer k in the range 1<k <=m,
[l pk+l(z) |/|Pk(z) |]/[| PX(2) |/|Pk— 1) I]-— (m - K)/(m + 1 - k) where the absolute value
symbols mean the magnifude of the vector sum of the real and imaginary parts when
P(z) is complex.



These generalizations show how to interpret derivative ratios for m and gy asa
root is approached. When at a trial point near a root, however, it is not easy to tell if
a derivative ratio is approaching a constant or infinity. The ratio of successive deriva-
tive ratios, as partially introduced in generalization (3), is useful for this purpose.
For a general integer k let us call this ratio ARATIO as it is in the computer program
described in a later section of the report; then,

Pk+1(z)
ARATIO = P (2) (12)
PX(z)

From generalizations (1) and (2) when k =m,

Pm+1(z)

m
ARATIO = — 2 &) _ (m 4 1)g (2 “b)~0 as z-b
P"(2)
Pm-l(z)

From generalization (3), ARATIO -~ (m - k)/(m + 1 - k) for 1=k <m; thus, when k
is a positive integer less than m, ]ARATIOI - C where the constant lies in the range
0.5=C<1 and when k=m, IARATIOI — 0. At a trial point in the vicinity of a root,
the zero may not be very distinct; but any iARATIO[ value less than 0.5 is an indica-
tion that the ARATIO associated with the particular k is headed for zero. The par-

ticular k can then be used as the current value of m.
The values of m and 81 obtained from a trial point provide the means of calculat-

ing z - b, in equation (6) for the general case of several roots at a point. However, a

more direct way is by equation (13)

Z-b =Lt (13)
P(2)

Pm’l(z)

where m is both the order of derivative and the multiplicity of the root. An excellent
characteristic of these calculated z - b. values is that they become increasingly accur-
ate as a root is approached. They are a powerful aid in converging to a root and in es-
tablishing a very accurate value for a root. The reason for better z - bj values as z

6



approaches b. is the major terms in the ratio of derivative equations become increas-
ing orders of magnitude larger than the terms ignored.

Limitations in Practical Applications

The preceding theoretical observations are useful only to the extent that they can
be applied within the limitations encountered in practical work. For finding roots of
polynomials the limitations are not severe; but they do exist; and they merit discussion.
Almost all of the limitations are a result of the number of significant figures that can be
carried for a constant or variable on the computer.

The basic constants and initial parameter values that are input to the computer have
a round off error in the last significant figure. As mathematical manipulations are
made on the computer these round off errors and other process errors make the prob-
able relative error of calculated parameters, such as, P(z) and its derivatives, larger.
For meaningful ratio of derivative analysis it is necessary to recognize when the error
of a computed value can be as large as the parameter itself. A relative error criterion
can be established for the polynomial derivatives from an error analysis study.

The number of significant figures that can be carried on a computer and the relative
error criterion in essence establish the maximum size of a single meaningful derivative
ratio. However, the judgment on the multiplicity of a trail root is made with ARATIO
which has two derivative ratios. Thus, it is necessary to have two reasonably accurate
derivative ratios. Since, as indicated in the earlier ARATIO discussion, both of these
derivative ratios may be approaching infinity, the maximum allowable size of a deriva-
tive ratio for the purpose of determining m is about the square root of the maximum
size of a single meaningful derivative ratio; that is, about one-half the meaningful sig-
nificant figures of a calculated derivative. This limit on the magnitude of a derivative
ratio for the determination of m in essence establishes the minimum distance for which
a computer program can resolve nearby roots rather than treat them as a multiple root.
As indicated by equation (13), this minimum resolution distance for a nearby pair of
roots is the inverse of the derivative ratio.

When a pair of root points are resolved, the error of the root point b, is of the
order of magnitude of the resolution distance. Usually the error of b. can be reduced
several orders of magnitude by using equation (13) for one more iteration to obtain b].
with the m established in resolution. The least improvement in accuracy is made if a
pair of roots are the resolution distance apart. I a pair of roots are greater than the
resolution distance apart, the order of magnitude of root location error reduction is the
ratio of resolution distance to the distance between the root pair. I a root pair is less
than the resolution distance apart, they are treated as a double root at the centroid of
the root pair.



Whereas a pair of nearby roots can by resolved to a known accuracy, the resolution
of clusters of nearby roots cannot be described as precisely. The approximate resolu-
tion distance of an evenly spaced group of roots m on a circle in the complex plane is
the number of meaningful significant figures of a computed derivative divided by m.
For example, if a computer has 16-significant-figure capability, it may be possible to
retain about 14 significant figures in a polynomial derivative value of a tenth-degree
polynomial. With four evenly spaced roots, the resolution distance would be only three
and a fraction significant figures. The ratio of derivatives method, however, is most
useful when closely packed clusters of roots or a multiroot point is encountered. In the
approach to such a group of roots the polynomial appears to approach a high ordered
zero or multiple root; so the actual value P(z) stays well below the absolute error as-
sociated with a computed value of P(z) for a range of z. In the case of an actual multi-
root point each of the m - 1 derivatives approach a lower order zero. Thus, it may
not be possible to evaluate P(z) and its lower derivatives, but it works out nicely that
the derivative ratios needed for root resolution (determination of m) are the ones that
can be calculated accurately. In fact, the advantage of the derivative ratio method over
other methods is that root analysis can still be done even though the polynomial and its
lower order derivatives cannot be evaluated with sufficient accuracy. Upon near range
approach to a cluster, individual roots can usually be resolved; but in the cases where
resolution cannot be made the remaining group is treated as a multiroot located near
the centroid of the group.

Summary of the Algorithm

The major features of the ratios of derivative method have been discussed at some
length. In the following stepwise procedure the ideas are summarized as they might be
used to find roots of polynomials:

(1) Find a trial z for which P(z) is in the vicinity of zero. The ratio of deriva-
tives method usually works for this, but it may not be either efficient enough or reliable
enough for a general program. It may be advisable to use some standard form of two-
or three-term Taylor's series expansion of the polynomial for this phase.

(2) When in the vicinity of a root evaluate the first derivative ratio, P'(z)/P(z) to
determine the approximate location of the root. P'(z)/P(z) is an order of magnitude
measure of the closeness of z to b..

(3) Find P''(z) and calculate P''(z)/P'(z). From equation (12), if P'(z)/P'(z) is
greater than one-half of P'(z)/P(z), there is a multiple root or at least two roots within
1/[P'(z)/P(z)] of each other so that they cannot be resolved yet. Continue taking deriv-
ative ratios, Pk(z)/ Pk'l(z), until one is found which is less than one-half the next lower
order one. The current multiplicity m of the root bj is k - 1 where Pk(z)/Pk-l(z)

8




is the first derivative ratio that is less than one-half of the next lower order derivative
ratio. As a group of roots is approached, it may be possible to resolve roots that looked
like multiple roots from a distance; consequently, m may be lowered during the z
trials.

(4) Adjust z with the following relation:

Z =2z - =— ' (14)
P™(z)

Pm'l(z)

As a root is more closely approached, this correction becomes better by orders of mag-
nitude. If a multiroot point is approached in iterating, the values of P(z) and lower
order derivatives approach high order zeros. Thus, it may not be possible to get values
for them, but the higher derivatives can be evaluated for m and the z adjustment.

(5) Locate z within a tolerance of about one-half the order of magnitude of the root
resolution criterion. For the purpose of resolving nearby roots, two successive deriv-
ative ratios which are free of round off or truncation errors are needed. Thus, a root
resolution criterion of about one-half the significant figures that can be retained in a
calculated derivative ratio should be used. If a z value is apparently closer to b]. than
the criterion range, it should be backed away until in the criterion range.

(6) After z is in the root-resolution criterion range, calculate g, from

1
g = P (@) (15)
m + 1 Pm(z)

and improve the value of b]-. When Pm(z)/Pm+1(z) is free of round off or truncation
error, the error in b]. can usually be reduced by several orders of magnitude with

b].=z—-—1--—- (16)

_Pz)

Pm'l(z)

(7) Divide the roots out of the polynomial. The order of the polynomial will be re-
duced from n to n - m.
(8) Estimate the location of the next root. The value of g, is very nearly
1 1 1

g~ + o —— (1n
z—b1 z-b2 Z-b




If another root is relatively close to the root just found, one term in equation (17) should
predominate. A rough approximation of the initial bj can then be

b,zz-L (18)

These general steps were used in a computer program for finding the roots of poly-
nomials with real coefficients. A computer program for only real number polynomials
rather than the general case of complex number polynomials is discussed for three rea-
sons. First, far more real number polynomials are used in practical applications.
Second, a computer program specifically constructed for only real number polynomials
requires somewhat fewer computer operations and, thus, is more efficient for the bulk
of problems. And third, discussion of a real number polynomial program may more
fully illustrate the application of the ratio of derivatives concept since almost all of the
logic needed for the general case, plus that specifically for real roots, is used.

DESCRIPTION OF THE COMPUTER PROGRAM

From both accuracy and efficiency considerations it is advantageous to structure a
program to do as much analysis in real number algebra as possible. The reason is that
fewer computer operations are required for real number computations than for complex
number computations. Thus, this program makes a thorough search for all real roots
first; so that the polynomials are often reduced in degree, and hence length, before
complex number algebra is needed. The program can be considered to be composed of
two parts, one with real algebra operations and the other with complex number opera-
tions. The major features of each are discussed.

Program Segments Coded in Real Number Algebra

Most of the real number operations are done in the main program, ROOTS, which
also serves as the control routine. The remaining real number operations are done in
subroutines which are mentioned by name at appropriate places in the discussion.

Preliminary calculations. - At first a check of the input data with the dimension
limits is made. Then some tests for easy reduction of polynomial degree are made. If
the highest degree coefficient is zero, the polynomial degree is lowered by one. The
test is repeated until a nonzero coefficient is found. The same type of test also is made
at the low degree end of the polynomial. A root value of zero is associated with each

10



zero coefficient on the low degree end. Thus, the roots equal to zero are immediately
accounted for, and the polynomial degree is reduced without further ado.

One other calculation of a preliminary nature is a possible gross scaling of the
polynomial. Scaling makes the root resolution criterion a fraction of average root size
instead of a fixed absolute value. The scaling is done by hexadecimal orders of magni-
tude. Hexadecimal scaling is used since no additional error is introduced into the poly-
nomial coefficients with computer multiplications and divisions by 16 on present com-
puters. A scaling decision is made from a least-squares line fit of hexadecimal
logarithms of the polynomial coefficients. If this line has a slope between +0.5 and -0. 5,
no gross scaling is done.

Polynomial and polynomial derivative calculation procedure. - The real number
polynomial can be written as

P(x) = alxn + azxn_1

+..oaX+a g (19)
where the a's are now real numbers indexed from the high degree end of the polynomial.
Indexing the polynomial coefficients in this manner conforms to the order they are input
in the program.

To qualitatively judge the nearness of a polynomial to a root, it is desirable to nor-
malize equation (19). Thus, it could be rewritten as

P(x) = ...[(al X + a2>x+ %3 X+. .. ®n x+ 1 a1 (20)
an+1 n+1 A+l An+1
where the term in braces is normalized to one. As a root is approached, the term in
braces approaches zero; but its value is meaningful only when above the absolute error
for the calculated value of P(x). The absolute error of the term in braces, of course,
grows with degree of the polynomial. For a tenth-degree polynomial the absolute error
can be expected to be approximately two orders of magnitude greater than the absolute
error of the same input number. If the first roots found are somewhat isolated, their
relative error will be almost as good as that of P(x). In the process of dividing out a
root, additional error is introduced into the remaining polynomial coefficients. Thus,
even though the polynomial gets shorter, the last roots, in general, have greater rela-
tive error. When the roots are all relatively isolated from each other, the root values
are certainly accurate enough for engineering applications (see examples in appendix C).
However, when several roots lie at a point or are clustered, the resolution is not
as good as with isolated roots; consequently, the accuracy of such roots is not as good
either. Unfortunately, when polynomials have multiple roots or clusters of roots, the
relative error of P(x) usually is higher too. The reason is believed to be a function of

11



the relative size of the polynomial coefficients. For illustration, note that a polynomial
of multiple roots can be written as (x - a)n. As n increases the center coefficients of
the binomial series expansion of (x - a)n becomes orders of magnitude larger than the
end coefficients. Another difficulty with binomial series coefficient polynomials is there
are terms nearly equal in magnitude but of opposite size. Consider, for example,

(x - 1)5 = x9 - 5x% 4 10x® - 10x? + 5x - 1. Note that as x approaches 1, 10x3 ap-
proaches 10x“ and the resulting sum will have few significant figures. Table I illus-
trates how small the value of this polynomial is in the vicinity of its multiple root.

For the purposes of illustration, table II shows how the finite precision of a com-
puter makes it impossible to locate multiple roots accurately if the polynomial equals
zero criterion is used. Even using ten significant figures in the evaluation of the poly-
nomial, the value of x = 0.999 will be accepted as a root. Thus, a ten-significant-

figure calculation does not even yield a three-significant-figure root. Furthermore,

TABLE II. - EVALUATION OF THE POLYNOMIAL
(x - 1)5 at x =0.999

(a) Using infinite precision

n An xn Anxn
TABLE L - VALUES OF THE 01 -111.0 -1.0
1] 5] .999 4. 995
POLYNOMIAL (x - 1)° AT 2|-10] .998 001 -9.980 01
_ 3| 10| .997 002 999 9.970 029 99
VARIOUS x 4| -5 .996 005 996 001 -4.980 029 980 005
P = (x- 1) = x5 _5x 4 1053 5| 1] .995009 990 004 999{ .995 009 990 004 999
- 10x2 + 5x - 1] > n
X"+ P(x) = Z A_x" = -0.000 000 000 000 001
X P(x) n=0 s J
0.8 0. 00032 {b) Truncating to ten significant figures B
.9 . 00001 n|A o0 A
.99 . 000 000 449 , R
.999 | . 000 000 000 000 001 of -1{10 -1.0
1] 5] .999 4.995
2|-10 | .998 001 -9.980 01
31 10 .997 002 999 9.970 029 99
4| -5] .996 0059960 -4.980 029 980
51 1] .995 009 999 00 .995 009 990 0

12
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after dividing out the root, the coefficients of the reduced polynomial will have at most
three significant figures.

Again for illustration the following table shows the buildup of error as each new root
is found with less accuracy than the preceding root:

%y = 1.0063

Xy =0.9985 + 0. 0061 i
Xq =0.9985 - 0.0061 i
Xy = -4.9015 - 0.7623 i

Xg = -9. 4521

5 3

- 5x2 + 10x" - 10x2 + 5x - 1, was input to a computer pro-
gram using Laguerre's method for finding roots. The program utilizing eight significant
figures in its calculation found the first root to about three significant figures. The next

two roots were also located to about three significant figures but were reported to be

The polynomial, (x - 1)5 =X

complex instead of real. The last two roots are not even accurate to within one signifi-
cant figure. However, the accuracy and internal checks within the program were satis-
fied and the program reported no error message indicating the roots were bad. The only
indication of trouble is the appearance of a complex root without a conjugate.

Even with the derivative ratio program, it is better to use the most accurate calcu-
lation procedure known for the calculation of P(X) to retain as much resolution capability
as possible.

An alternate method of evaluating P(x) is the following form:

P(x)=}{. . . (ﬂx+1>zx+13x+1 “n x+1an_|_1 (21)
ay a3 a4 3n+1

The epsilon, delta error analysis method of reference 3 applied to the previous forms
for evaluating the polynomial P(x) shows that the latter form is probably the more ac-
curate when clusters of roots are encountered, even though there are more operations
used. Part of the reason is that no additional absolute error is introduced in the addi-
tions of the exact constant one. For a fifth-degree root the relative errors of P(x) com-
putations by equations (20) and (21) are the same; but for a tenth-degree root the relative
error of P(x) computed by equation (21) is about 5 percent less than that of equation (20).
There is some question as to whether this is enough difference to warrant the use of the

13



latter form; but it was used in the program since the overall program is generally quite
fast and efficient.

Equation (21) cannot be used directly, however, because a zero coefficient gives the
division-by-zero problem. This problem can be handled, in general, by checking the
magnitude of each coefficient with some tolerance which should be about the absolute
error of other polynomial coefficients. If some polynomial coefficients a.'s are below
the tolerance, the principle illustrated by equation (22) can be used to evaluate P(x) in
the following way:

a a a, a
P(x) ={|- . . ...(—lx+1)—2x+1...ilx2+1... n + a4
as ag aj+1 I+l

(22)

Derivatives of P(x) also are polynomials, so the preceding equation forms are ap-
plicable for them too. Calculation of the derivatives is simply a matter of setting up the
derivative coefficients and adjusting the degree of the polynomial. The calculation of a
polynomial and its derivatives, with x the only independent variable, is the specific
function of subroutine RPOLY. At any point x during iteration P(x), P'(x), and P'(x)
always are calculated. Higher order derivatives are calculated only if the ratio of de-
rivatives segment of the program has a need for them.

Approximate root location with second order Taylor's series. - A second order
Taylor's series is used for moving x in the vicinity of a root. This method was chosen
because, first, it is quite efficient in moving toward roots and, second, it can be pro-
grammed to almost certainly get sufficiently near all the real roots.

The series may be written as

2
P(x + h) = P(x) = hP'(x) + 112_ P''(x) (23)

Since real roots are the x values for which P(x) is zero, the x increment, or h,
which makes P(x + h) equal zero is sought. With h the only unknown in equation (23),
the quadratic equation can be solved for values of h. If the h's are real, the polynomial
appears headed for a root. The value of x then is corrected by the h with the smaller
magnitude. And P(x) and its derivatives are recalculated with the new xX. When the
absolute value of P(x) gets below the resolution distance TOLR, the ratio of derivatives
procedure is entered.

If the h's in the Taylor's series quadratic equation are not real, the polynomial
either has made an approach and retreat from the x-axis or appears to be making an
approach and retreat from the x-axis. Through logical use of P(x), P'(x) and their
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comparison with P(x) and P'(x) from the previous x trial, the polynomial can be in-
vestigated in this region to readily determine if this is indeed an x-axis approach and
retreat rather than a root. I the region is only an approach, increasing x-increment
steps are taken away from the region in the direction started. These steps are continued
until either another real h is found or 15 steps have been taken in which case x values
are investigated in the other direction from the starting point. If no real roots are found
in that direction either, the complex number analysis subroutine, COMPLX, is called.

The starting point in the search for the first real root is x = 0. The first x move-
ment is in the direction of decreasing |P(x) | . After a root has been found, the starting
point in the search for the next root is the estimated x value from the ratio of deriva-
tives analysis.

Real number analysis by ratio of derivatives. - The most important parameter in
the program for making decisions with ratio of derivatives analysis is ARATIO, which

is defined as

Pk+ l(X)

K
ARATIO=1 P (® | (24)
PX(x)

where k is the order of a polynomial derivative. This parameter is useful because we
know from theory that

ARATIO << 0.5 for k=m (25)
and
1.0 > ARATIO = 0.5 for l1=k<m (26)

as a root is approached. In the program 0. 45 was used for the 0. 5 in equations (25)
and (26) to give a little allowance for error. These constants in essence establish when
roots are treated as multiple or close together.

The remaining possibility of ARATIO greater than one is an indication of either an
x value between or among roots but not relatively near any or an encounter with absolute
error of a computed derivative rather than a true value. To do meaningful analysis, it
is necessary to know which it is. So it is important to establish a good polynomial error
criterion. The criterion parameter in the program is TOLRQ. It is the probable abso-
lute error of a computed polynomial value normalized by the lowest degree constant
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which is nonzero. The normalized polynomial or polynomial derivative in the program
is P(ND); and it is to be distinguished from POLY(ND), the value of the polynomial or
polynomial derivative. Also note that since a zero subscript cannot be used in some
computer languages, P(1) denotes the normalized polynomial, P(2) is the normalized
first derivative, and so forth; that is, ND =k + 1. '

TOLRQ should be greater than the probable absolute error of P(ND); but excess
margin cuts into the root resolution distance criterion TOLR, which is the square root
of TOLRQ. Consequently, TOLRQ should be set with care. In this program TOLRQ
varies with the degree of the polynomial as a result of an epsilon, deita error analysis
of multiroot polynomials or varying degree. After the functional relation was estab-
lished, the magnitude of TOLRQ was finally set by noting when computed values became
different from known polynomial values for specific cases. With this functional rela-
tion of TOLRQ, better root accuracy can be expected with low degree polynomials.

The resolution criterion coefficients are essentially an absolute distance. However,
it is probably desirable to have the resolution criterion be a relative distance to the
local root. This effectively can be accomplished by scaling the polynomial so the local
root is of order one. To accomplish this, subroutine SCALER is called for an order of
magnitude check of x on only the first pass through the ratio of derivatives analysis of
each root. If the hexadecimal logarithm of x is not within +0,5 of zero, the polynomial
will be hexadecimally scaled to bring the local x to order one for root analysis. How-
ever, since the polynomial coefficients must be held within the exponent limits of a
computer, scaling in some cases is limited.

In recognition of the probable magnitude of polynomial absolute error, an attempt
is made to begin the ratio of derivatives analysis with P(ND - 1), P(ND), and
P(ND + 1) values which have magnitudes greater than TOLRQ. Initially, ND is two so
P(1), P(2), and P(3) are calculated. The procedure is to then check P(1) with TOLRQ.
If IP( 1)| < TOLRQ, ND is increased by one if ND is less than the degree of the poly-
nomial. Then IP(ND - 1)] is checked with TOLRQ. The procedure is repeated until
|P(ND - 1)| is greater than TOLRQ or ND equals the degree of the polynomial. If
|P(ND - 1)| > TOLRQ, the logical parameter LIMIT is set to zero in the program to
indicate complete ratio of derivative analysis is possible.

ARATIO is computed from the three polynomial and/or polynomial derivative
values, POLY(ND - 1), POLY(ND), and POLY(ND + 1). When LIMIT =0 and
ARATIO < 1, analysis is done according to theory. When LIMIT = 1, the computed
value of POLY(ND - 1) is expected to have an absolute error value rather than an ap-
propriate value for POLY(ND - 1). Thus, the analysis methods based on an accurate
value of POLY(ND - 1) are not used. However, some of the ratio of derivatives judg-
ments can still be made on the assumption that the actual value of IPOLY(ND -1 | is
probably less than the computed value of |POLY(ND - 1)| since the lowest allowable
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program limit of |P(ND - 1)] is 0.5 * TOLRQ.

When ARATIO > 1 and LIMIT = 0, the present x value is between or among roots.
Some knowledge of the nature of ARATIO contours about roots is helpful in establishing
procedures when ARATIO is greater than one. As an example, the ARATIO contours
for the polynomial, P(z) = z2(z - 1)(z - 100), are shown on the complex plane in figures
1 to 3. Such plots for known problems yield a great deal of information as to how to
handle general cases. In this example, note that, for the group of three real roots,

-(1) the relative symmetry, (2) the points where ARATIO approaches zero and infinity,

and (3) the values of ARATIO at derivative ratios above and below the point where an
ARATIO approaches zero or infinity. From these figures for this single problem the
following elements of procedure evolved:
(1) When ARATIO for ND is greater than one, step in a direction until an ARATIO
very near zero is found.
(2) This low ARATIO may be a false root or roots, so check the root candidate as
follows:
(a) If ND = 2, either P(x) or P'(x) approaches zero; so if |P(x)| < |P"(x)],
X is the root.
(b) If ND > 2, ARATIO for ND - 1 at a root should be 0. 5 by the theory.
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Figure 1. - Third degree ARATIO contours for polynomial Pz} = 22z - 1)z - 100) where
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(3) If the root point is false (i.e., ARATIO for ND - 1 approaches infinity when
ND > 2 or |P"(x)| < |P(x)| when ND = 2), set x at the opposite point of symmetry and
make the root test again.

A summary of the basic logical steps for the ratio of derivatives analysis for real roots
is given in appendix D. The general philosophy of resolving roots in a group is to start
with an ND equalto m + 1 and work down in ND as root resolution progresses. The
reason is that multiple roots should be found first. The multiple root analysis is done
with higher derivatives, which often can be calculated accurately, whereas the lower
derivatives and P(1) may be below TOLRQ, so that the single root analysis cannot be
done accurately. '

If upon entry of the ratio of derivatives part of the program the x point is outside
the group by a distance of approximately one or two times the maximum distance between
roots in the group, the group will appear at first to6 be a multiple root; so the initial ND
value naturally will be raised to the number of roots in the group plus one (note that the
values of ARATIO away from roots in figs. 2 and 3 are always greater than 0.5). How-
ever, if the first x trial in the ratios of derivative analysis is within the group, it is
probable that a low ARATIO of a false root will be found at a lower than desired ND.
The test for this situation is to raise ND by one and check the ARATIO at the higher
ND. If this ARATIO > 1, analysis is begun at this higher ND; but if ARATIO < 1,
analysis is begun at the original ND.

The aforementioned procedures probably would work quite well for only real roots;
but a program must be able to handle the cases of real and complex roots in a group.
ARATIO contours for known problems of this type show definite patterns; but the con-
tours are not as distinctive as those for only real roots. These contours, however, give
clues as to how to search for a real root when one is known to exist in the group.

An odd number of real roots is known to exist within a range of x if P(1) is known
to change sign in that range. As an aid for the analysis of a group of roots a running
record of a possible root range is kept. If values of P(1) distinguishable from the abso-
lute error are known to change sign between x trials, the logical parameter IMSURE
is set to one. At each new x trial throughout the Taylor's series investigation and ratio
of derivative analysis, P(1) is checked; so the root range is often narrowed with each
new x trial. If IMSURE is one, the root group ARATIO's will be quite carefully
searched for a real root over the known root range. It may not be possible to find a root
because the necessary P(ND) values are below TOLRQ. In this case x values are
found which place |P(1)| values at the ends of the root range between 0.5 and 1.0 times
TOLRQ; and a root is divided out at midrange x.

Dividing out roots. - After a root or multiple roots are identified, the normal pro-
cedure is to (1) locate x within the range of 0.2 * TOLR and 1.0 * TOLR of bj,

(2) estimate the location of the next root, (3) improve the value of the present root, and

19



(4) divide the root out of the polynomial.' The x estimate for the next root is given by
the following equation:

X - m+1 ' (27)
Pm+1(x)

P(x)

Xnext =

If ]P(ND - 1)[ > TOLRQ, the value of the present root can be improved, usually by sev-
eral orders of magnitudes, by the following equation:

X, =x-——1 __x. 1 (28)
r P () [POLY(ND + 1)]
— POLY(ND

The number of roots m found are divided out of the polynomial one at a time by the
method presented on pages 76 and 77 of reference 3. This method is shown in appen-
dix B for convenience. The normalized polynomial remainder (polynomial relative
error) left after each root is divided out is also saved for output. The polynomial re-
mainder should be zero; so its value is a good clue as to whether or not the root was
determined as accurately as it should have been.

When the degree of the polynomial is reduced to two or less, subroutine QED is
called. Any remaining roots are found by direct computation. Then all of the polyno-
mial roots and remainders are printed.

Program Segments in Coded in Complex Number Algebra

If more than two roots remain after the search for real roots has been completed,
subroutine COMPLX is called for the search of complex conjugate pairs of roots. The
procedures in COMPLX somewhat parallels those of ROOTS.

Polynomial and polynomial derivative calculation procedure. - The polynomial P(z)
and its derivatives are calculated with a form of equation (21) for complex numbers. The
calculation of a polynomial and its derivatives with z the independent variable is the
specific function of subroutine CPOLY. At any z point during iteration, P(z), P'(z),
and P''(z) always are calculated. Higher order derivatives are calculated only if the
ratio of derivatives segment of the program has a need for them.

Approximate root location with second order Taylor's series. - A second order
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complex Taylor's series is used to locate z in the vicinity of a root. The series may
be written as

2
(z, - 2)
P(z,) = P(z) + P'(2)(z, - z) + P"'(2) _£_2_ (29)
Since roots are z, values from which P(zr) is zero, equation (29) can be written as

(z, - 2)°
0 = P(x) + iP(y) + [P'(x) + iP'(y):I(zr -zZ)+ [P"(x) + iP"(y):l —5 (30)

The solution of equation (30) for z, -2 can be expressed as

2 -z =-[P'® +Py)]

r P'(x) + iP"(y)

\@N(x)]z - PW]? - 2[P@P"x) - PyP(y)] + 21 [P(x)P'(3) - P(y)P''(x) - P(x)P(y)]
:t PI'( i l|7 ] (31)
x) + iP'(y)

The plus or minus sign on the square root term of equation (31) indicates that the term
may be used as computed or at a 180° phase angle. Both solutions for z,. - Z are com-
puted. The one that gives the smaller absolute value of Z,.-Z in the complex plane is
used for the new trial Z,.. When the absolute value of P(zr) is reduced below the reso-
lution tolerance TOLI, the ratio of derivatives analysis is begun.

The initial coordinates of the Taylor's series search for the first complex root are
the x that corresponds to some local minimum of |P(x)| in the real number Taylor's
series analysis in ROOTS and a y value equal to the square root of IP(x) | After a
complex conjugate pair of roots have been found, the initial coordinates in the search
for the next roots are the estimates from the final stages of the ratio of derivatives
analysis of the present root.

Complex number root analysis by ratio of derivatives. - It is rather interesting that
all of the information extracted from real number ratio of derivative analysis along the
x-axis can also be extracted from complex number ratio of derivative analysis in the

complex plane. The reason for this lies with the very definition of analytic complex
number derivatives. The essential point is that a derivative has the same value at a
point no matter from which direction the point is approached. The complex derivatives
have real and complex parts which can be vectorially combined into derivative magni-
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tudes. Ratio of derivative analysis based on these derivative magnitudes (ARATIO'S)
works in the same way as real number ratio of derivative analysis for the determination
of m.

As with real roots the derivative ratios used to establish m are the ones from
which the component adjustments are made. However, in complex numbers it is neces-
sary to break down the appropriate derivative ratios into real and imaginary parts to
get x and y adjustment values. Since the development of appropriate equations is
somewhat complicated, it is done in appendix B, and only the results are shown here.
The adjusted or new x and y values are obtained from the derivatives by the following

equations:
_ A
Tnew = % - —2— (B32)
A" +B
_ B
Ynew =Y + T__Z (B33)
A +B
where
A - PR@P™ ) + PP Ly) B27)
2 2
[P™ 0] + [P liy)]
and

B

_ Pm<y>Pm'1(:;) - Pm(x)Pm'21<y> (B28)
[Pm'l(X)] + [Pm'l(y)]

In the ratio of derivatives analysis, the logical parameter LIMIT is again used to
indicate whether or not the computed polynomial value is greater than the probable ab-
solute error. The complex number criterion TOLIQ is of the same form as TOLRQ;
but TOLIQ was set at four times TOLRQ. This is because more computer operations
are needed to compute a complex number polynomial value than for a real number poly-
nomial of the same degree. The complex root resolution criterion TOLI is the square
root of TOLIQ.

For the initial z trial in ratio of derivatives analysis two checks are made. First,
the degree of the root approached is raised as necessary within the restraints of the de-
gree of the polynomial to begin the analysis with LIMIT equal to zero if possible. And
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second, the polynomial is scaled if the magnitude of z is not sufficiently near one.

If, during ratio of derivatives analysis, ARATIO is less than one and LIMIT is
zero, the analysis follows the theory. When ARATIO is greater than one with LIMIT
equal to zero, the present point lies between or among roots. Since there is another
adjustment degree of freedom on a plane as compared to that along a line, there is
greater desire to have z movement procedures which effectively and efficiently move
toward roots. Again the ARATIO contours in the complex plane give clues of effective
procedures. See figure 4 for an example of contours about complex roots. Also, the

2, Second degree ARATIO =
[PIPIIII(PII)Z

First degree ARATIO =
[PP1pr ?

Third degree ARATJO <l
[pupuu/(pm) |
i

degree ARATIO =
P"'PS/(P"")Z]

12

8 9
X

Figure 4. - ARATIO contours for polynomial P(z) = (z - 9+ 2(z - 9 - )2z - 11 + 184z - 11 - )2,
(Note: The polynomial is symmetric in four quadrants about the point x =10, y = 0.}

ARATIO contours of figures 1 to 3 are quite similar to those in the vicinity of a similar
grouping of complex roots. When ARATIO is somewhat greater than one, the contours
are nearly circles. Clearly steps should be toward lower ARATIO; but a direction
started may not necessarily head in the direction of an ARATIO less than 0.45. Con-
sequently, the need of a curved path is indicated.

In the program the procedure, when ARATIO is greater than one, is to test step
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in the x direction and then in the y direction. From these two normal steps the most
effective direction for reducing ARATIO is determined. Then a spiral path in 30° in-
crements is followed in the search for an ARATIO less than 0.45. If while on the
spiral ARATIO increases from the previous iteration, analysis reverts back to the pre-
vious point. At that point, a new direction is determined from another set of x and y
test steps; and then a spiral turning in the opposite direction is begun. The experience
is that the program should seldom have to move more than seven points on any one
spiral or should seldom have to begin a new spiral more than once.

In the complex plane the general philosophy of resolving roots in a group is nearly
the same as on the real axis in ROOTS. There are some differences, however, which
deserve discussion. First, since there is freedom to move about the complex plane,
the problem of resolving complex from real roots no longer exists. If it turns out that
there still are real roots in the group, they can be identified in the complex plane too.

A second difference is in the check of the degree of the root candidate investigated.
In ROOTS a root candidate was quite well located before a final check of the root degree
(ND level) was made. In the complex plane there are not quite as many logical param-
eter possibilities, so it is a little easier to change the root degree at any time during
the ratio of derivative analysis. This is done by checking ARATIO and another
ARATIO at the next lower ND for each z trial when the degree of the root is greater
than one.

A third difference is that the symmetry of ARATIO contours cannot be depended
upon. In a root group it is less probable that points where ARATIO equals zero will
be symmetrical with each other about a point where ARATIO equals infinity. However,
by keeping track of ARATIO's at the two ND's it is usually possible to identify false
roots quickly.

Dividing out roots. - As a root or multiple roots are approached, the final decision
on the multiplicity of the root is made when z is within the range of 0.2 * TOLI and
1.0 * TOLI of b.. After m is established, the location of the next nearest root is

estimated from g4 found by

m+ 1 Pm(z)

g1 7

Since the conjugate of the present root is also in g1 the breakdown of g1 for the next
nearest root location is a rather lengthy development which is shown in appendix B.
The resulting equations for the new coordinates are
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¥next = %r ~ 2 (37)

R -

2y, 2y,

and
m 2 2
ERYr * <gI + E—>(xr " next) [(xr - Xnext) * Yy ]
2 _ Yy 8
Ynext = — m (38)
ERYr - GI + 2—Y_>(xr - xnext)
r

where gR and gp respectively, are the real and imaginary parts of g1 The values
of the present root coordinates then are improved with the same equations used for
coordinate adjustment, that is, equations (32) and (33).

A complex root is first artificially divided out of the polynomial to find the real
and imaginary normalized polynomial remainders. Since these remainders should be
zero, their values are clues as to whether or not the complex root was located as ac-
curately as it should have been. The dividing out process is artificial in the sense that
the polynomial coefficients are not permanently changed until the root and its conjugate
are divided out together in real algebra. The equations and details for dividing out the
complex roots by both methods are shown in appendix B. The polynomial remainder
from the real algebra division appears in the same printout line with the conjugate root.

Examples

The general capabilities and limitations of the program have been discussed; but
they are most effectively shown with examples. The exact roots of several polynomials
that are difficult to solve are shown with the computed roots in the program output sec-
tion of appendix C. These examples illustrate the root resolution capability of this pro-
gram.

Appendix C also contains a listing of the program, a description list of the program
variables, and other special instructions for a user.

CONCLUDING REMARKS

The ratio of derivatives method is a powerful method of finding roots of polynomials.
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A computer program for finding the roots of real number polynomials by this method was
developed to see how useful the theory is within the confines of calculated number accur-
acies. Examples of the root resolution power of this program illustrate that the method
is indeed powerful in practice as well as in theory. Although a program was not devel-
oped for complex number polynomials coefficients, equally effective root finding pro-
grams can be developed with the ratio of derivatives method.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, March 2, 1972,
764-74.
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APPENDIX A

SYMBOLS

A combination of complex derivative terms (see eq. (B27))
a general polynomial coefficient
B combination of complex derivative terms (see eq. (B28))
b general coordinate of roots
c general polynomial coefficient after a root is divided out

n
13 function of the form ]Z:—l [1/(z - bj):]

n
£l function of the form 21 l:l/(z - b].)k:]

] n-m
g4 f, at a root with the local root point excluded, ]Z; [1/(z - bj)]

n-m

g1 f,, at a root with the local root point excluded, 35—31 [1/(z - bj)k]
h x adjustment increment toward a root by Taylor's series
k degree of an arbitrary polynomial derivative
L arbitrary exponent of the function f; in eq. (B21)
m number of roots at the particular root point
n number of roots in the polynomial
P(x) polynomial in real numbers
P(z) polynomial in complex numbers
Pk(z) kth polynomial derivative in complex numbers
b4 independent variable or real component of independent variable
vy imaginary component of independent variable
Z independent variable in complex number form
Subscripts:
I refers to imaginary part of a complex variable

j

an arbitrary term or root of a polynomial
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nth and last root or next to last polynomial coefficient

n
new newest approximation to a root

next estimate of next root location

R refers to real part of a complex variable

r root or very near root value

Superscripts:

j arbitrary term in the polynomial

k degree of an arbitrary polynomial derivative

l arbitrary power of the function f; in eq. (B21)
m number of roots at a root point

n degree of the polynomial

11t

Teee
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first derivative
second derivative
third derivative

fourth derivative



APPENDIX B

RATIO OF POLYNOMIAL DERIVATIVE EQUATIONS
Development of General Equations
A general complex number polynomial in terms of its roots can be written as
P(z) = (z - b))z - bo)(z - bg) . . . (z-b) (B1)
The first derivative of equation (B1) is
P'@) = {[(z - by)(z = bg) . . . (2-D)] + [(2-by)z -Dg) . . . (z-D]]
+oo s+ [z-b)z =Dy . . . (-0 ]} (B2)

Form the first derivative ratio by dividing equation (B2) by equation (B1)

P'(Z)=f1= 1 + L 1 ...+ 1 (B3)
P(z) z-by z-by 2z-bg z-bj z-b,
Generalize equation (B3) to
fl =..m_ g1 (B4)

where b, is the closest root to z, m is the number of roots at b., and g1 is the sum
of the remaining n - m terms in equation (B3). Equation (B2) can be written as

P'(z) = P(z) - 2B - p(z) - 1, (B5)
P(z)

Differentiate equation (B5) to get the second derivative of P(x)

P''(z) = P'(z) - f; + P(2) - f'1

1 1 + 1 +. .. 1

+ e s e
(z-bp)? (z-by? (z-by? (z - by

= P(z) - f% - P(z)
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P'(z) = B(z) - (13 - 1) (B6)

where

fo = 1 + 1 + 1 .. e—1 (BT)
(z-bp? (z-bp? (z-Dy)? (z - by)?

Generalize equation (B7) to

(z - b))
]
The second derivative ratio is
2
P'(z) £

Substituting equations (B4) and (B8), equation (B9) becomes

2
( mb + g.1> - Lz + gz
P"(Z) _ z ] (Z - b])
P'(z) m g
Z - b. 1
J
m(m - 1) 2mgy
* *81 782
(z-b)? 7P
= ] (B10)
m
+ g
z-b 1

Differentiate equation (B6) to get the third derivative of P(z)
P''(z) = PY(z) - <f§ - f2> + P(2) - (2L - 1))
= P(z) - £ - (13 - £) + P(2) - [2t;(- D)ty - (-2)t,]
- P(z) - <f? - 360y + 2f3) (B11)
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where

fg=| —t— L .1 .1 (B12)

(z-bp)° (2-bp® (2 -by° (z - b)?

Generalize equation (B12) to

) (Z - b])3

The third derivative ratio is

3
P'i@) - f1 - 3f1f2 + 2f3

( (B14)
P (z) 2
f1-1y
With the generalized f substitutions (B14) becomes
m(m - 1)(m - 2)  Sm(m - g, 3mg] g m
+ + +g1] - 3g2 +gq] + 2g3
P"'(Z) (Z - b]')3 (Z = bj)z 2 - bj bj
11!
P'(z) m(m'1)+2mg1+g .
j ! (B15)

Differentiate equation (B11) to get the fourth derivative of P(z)

P(z) = P(z) - (£ - 388, + 23) + B(z) - (3631] - 36, - 3,1} + 213)

= P(z)- £ (fi - 3f1f2+2f3) +P(z)- [3 (f% - f2>(-1)f2 - 3f,(-2)f5 + 2(-3)f4]

- P(z)- (f‘i - 6121, + B, + 3f2 - 6f4) (B16)
where
£y = 1,1 1 a1 (B17)
(z-b)* (z-by? (z-by? (z - by*
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Again generalize the f as before

fg=—"+gy, (B18)
(z - bj)4

The fourth derivative ratio is

4 2 2
- 6£5f, + 8f1f3 + 3f2 - 6f4

P""(Z) _ f1 1l9 (Blg)
P'”(Z) 3
With the generalized f substitutions, equation (B19) becomes
[ 4m(m - 1)(m - 2) 6m(m - 1) 2 4mg3
m(m - 1)(m -2)(m - 3) 1, 1, g1+g4
(z—b)4 (z—b)3 (z-b)2 z-b; -
Pryz) L j st R S
P"'(Z) r m(m 1) 2
- - - lg mg
m(m - 1)(m 2)+3 1+3 1+g? —3g2<m +g1>+2g3
(Z - b])3 (Z - b])z z - bj B bj
m(m - 1) 2mg, 2 m
-6g + +g7] + 8g +g4) +3g5 - 6g
2 2 7z-D 1 32 - 1. 1 2 4
(z - b]) J J
m(m - 1)}(m - 2) m(m - 1)gl mg% 3 m
+3 5 +3 + 8] —3g2 +g1>+2g3
(z - by)° (z - b)) 2 - b " b
(B20)

Higher derivatives develop in the same way. The process follows the pattern used to get
the first four derivatives. The higher derivatives have progressively more terms in the
generalized forms for the f's. This does not seem consistent with the fact that P™(z)
must be a constant and all the higher derivatives must be zero. But what is happening is
that in progressing to high derivatives with the generalized forms for the f's, more and
more terms are carried internally that would cancel if the f's and g's were expanded in
their z - b terms.

At this point a generalization of the patterns shown by the first four derivatives is
in order. First note that the terms in the brackets in equation (B20) and in each of the
corresponding lower order equations correspond to something like a binomial expansion.
The general form for fi to the kD power can be expressed as
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kK'm! (gl)l

ik -1)(m-k+12)(z - bj)k-l

if 0! is understood to be one.

(B21)

Comparison of equations (B19) and (B20) and each of the other corresponding pairs
of derivative ratio equations indicates the following procedure for transferring the deriv-
ative ratio equations from those with f's to the form with m's and g's: (1) replace the
f,'s and powers of f; with equation (B21), and (2) replace all the f's that do not have a

subscript of 1 with g's that have the corresponding subscript.

Division of a Real Root from the Polynomials (from ref. 3)

The general polynomial

P(x) = alxn + azxn_l too. kA Xta

can be expressed in terms of a root as
Px) = (x - xr)(clxn-1 + czxn_2 ..o ke X+ cn) +€1
By equating powers of X in equations (B22) and (B23)
a;=cq B
ag =Cq - C1X,
ag = Cg - CoX,,

a5 =Ch " Cn-1%p

= - X
A+l Cn+1 ~ Cn¥r y

(B22)

(B23)

(B24)

The c's can be solved for directly by starting from the top of the equation set (B24)
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= X
C an+1+cn

n+l1 r

The constants, cq to c,, are the coefficients for the polynomial left after the root is
divided out. The constant Chnsl is the remainder which should be zero.

Complex Number Root Coordinate Adjustment by Ratio of Derivatives

When in the vicinity of roots, complex derivative ratios are used for the analysis

and finer adjustment to root coordinates. Once m is determined, the coordinate adjust-

ment equations are obtained from the following general equations:

P™(z) . 1 (B26)

p-liy 2 - 2oy

Break equation (B26) into real and imaginary parts

[Pm(x) + iPm(Y)] [-Em-l(x) - iPm_l(Y)] - 1 [(X ~ *new) ~ 1V - yneW)J
[Pm-l(x) + iPm-l(Y)] [Pm-l(x) - iPm_l(Y)] [(x " Xney) + 1Y - ynew):] [(X " Xpew) ~ 1V - ynew)J

PP 1) 4 PRy P Ly) + i[PTPP ) - PREP )] | & - *new) <10 - Ynew)
)2

1)+ [P l)”

2
(- %0 )2+ = Ve

Let

A - PP@P ) + py)p™ Ly) (B27)
2 2
i)+ [Py
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(B28)

B = PRPuP™ Iy - PPxp™Ly)

[p-1e)” + [p-iiy)”

Therefore,
aim o E new) T Yooy
2 2
(X - Xpew)” + (¥ = ey
X-X
A= - new - (B29)
(%~ Xpew)” + (¥ - Vpew)
y-J
B-- - new - (B30)
(X = Xpew)” + (¥ - Ynew)

By dividing equation (B29) by equation (B30), we have the following simple relation:
X - X
. new (B31)

A__
B Y~ Ynew

Equation (B31) then can be used in equations (B29) and (B30) to get the following x and
(B32)

y adjustment equations:
A

(B33)

B
Ynew =Y * 2 9
A+ B

Estimate of Next Nearest Complex Root

When near a root, the term g; is obtained from
1 Pm+1(z)

g1 7
m+ 1 Pm(z)

35



where

n-m _
0=,
1=

z bj

=1

Included in the summation is the conjugate of the present root. If the next nearest root
and its conjugate are relatively much nearer than the others remaining, gy can be ap-

proximated by

g =gp+ig=—2—+—L1 L
Zp = Zp Zp " Zhext  Zr T Znext

where gr and gp are, respectively, the real and imaginary parts of g1 Now continue

to expand the preceding equation as follows:

m 1 1
+

+
(ep +1y) - (xp - dyp) (% + 1) - (Kpext =~ Wpext) (%p +1¥) - (Xne_xt = Wpext)

gEp * gy =

__m 1 + 1

2iyr (Xr - Xnext) + i(yr - ynext) (xr - xnext) + i(yr + ynext)

-im . [(xr - xnext) * i(yr + ynext):] * [(xr - xnext) + i(yr - ynext)]

3y [(Xr - Xnext) + i(yr - ynext)] [(xr - Xnext) + i(yr + ynext)]

_-im 2(xr B Xnext) + 21y,
2y 2 2 2 ) .
r (x, - Xnext) " (yr " Ynext) * 2i(xp - Xnext)yr
. 2 2 2 .
_-im 2[(xr - xnext) + 1y] [(Xr " Xpext) - (yr B ynext) - 2i(x,, - Xnext)yr]
2y 2
r 2 2_ 2 )] 2.2
[(xr - xnext) - (yr ~ Ynext + 4(xr - Xnext) Yr

2 2 2 2
o -im 2{(xr - xnext) [(xr - xnext) B (yr - ynext)] + 2%, - xnext)yr}
2y, D

. 2 2 2 2
. 21yr{[(xr B xnext) - (yr B ynext)] "~ 2(xr - xnext) }
D
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y"
i
(‘-

where

2
2 2 2 2.2
D= [(XI‘ " Znext) " (Yr - ynext)] i G S g

The separate equations for real and imaginary parts are

2 (2. .2 ]
_ A%y - Knext) [(xr " Xnext) * (yr " Ynex‘t) (B34)
ER~ D
m 25y [(xr - Xnext)2 ¥ (yf. _ yrzleXt>]
- . (B35)
Zyr D

Divide the preceding equations and solve for Y121ext

2 2 2
(Xr - xnext) [(xr - xnext) + (yr + ynext)]

gR .
m 2 2 2
gp+ yr[ Xp - xnext) + (yr - ynext)]
2yr
2 (2 2 _ m i 2. 2. .2
ERYr [(Xr - xnext) + (yr - ynext)] - (gI + 5—) xnext) [(xr xnext) + Yy * Ynex

et > - xnext)
( 2y,,

2 2 2
X [(xr - xnext) * yr] +ERYy [(Xr - xnext) + YIZ‘]

2 m
Ynext|BRYr ~ (gI + "27>(xr - Xnext)
r

(B36)

Substitute equation (B36) into equation (B34) and solve for x next

37



2 2
[gRyr + (gl + §'>(xr b xnext)] [(xr ~ Fnext) * yr]

r —
m
ErYr - <gI * 2——>(xr - xnex_t)
+ M ¥z -x M H 2 2 2
Ry Br+ g T next Xp - xnext) +¥r
r

m
gRr¥r - <gI + Ey_>(xr - Xnext)
T,

2 2
2xp - Xpog){ Xy = Xpexd)” +Vp +

Er~

2

- 2 _ 2.2
(xr xnext) Ypt * 4(Xr - xnext) Yr

2gny [(x -x )% 4y2
R'rl\'r next r

m
ERYyr - (gI + g)b‘r - xnext)
T,

2(xr - Xnext)

2

2 m 2
2 [(Xr - xnext) ERYr * (gI + Ey—>(xr - xnext) yr]
r .

m
ERYr - (gI + 2_y_>(xr - xnext)
T

2.2
+ 4(xr - xnext) Yr

2 2 m
2%y - xnext)(zgRyr)[(xr " Xpext) yr] [gRyr h éI * E)Ocr - Xnext)]
r,

2 2
2 m 2 2.2 m
{2[(Xr - Xnext) ERYr * GI * '27 Xp - xnext)yr]} + 4(xr - xnext) Vr [gRyr - <gI + Ey_)(xr - xnext)]
r r

Er|8RYr - (B1 7 - (Xr - Xnext)
Zyr
5 2
yr(xr - xnext) [gR * (gI + ?ZE_>
¥,

2
2 m _ _ m_ _
gRyr(xr - xnext) Er* éI + '27> = 8R|8RYr <g1 + 2y >(Xr Xnext)
r r

(x

2
2 m m { _
r Xnext) Yr|8r * <gI + > +tept =8Rr

2y, 2y,
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X, - — (B37)

next ~

The plus Ynext value is used in equation (B36) in the attempt to keep the search for
complex roots above the x-axis.

Division of a Complex Root from the Polynomial

The general polynomial

P(z) = alzn + azzn'1 +...az+an g (B38)
can be expressed in terms of a root as
P(z) = (z - Zr) (clzn'1 + czzn"2 ... Co 42+ cn> + ¢t

Equating powers of z resulfs in the following:

_ ~N
1%
a.z = Cz - Clzr
- (B39)

= - Z
3n+1 = %ns1 T Cn?r _

The c's are complex coefficients which may be solved for directly by starting from the
top of the equation set (B39).

39



1 =31
C2 = a.2 + Clzr

03 = a3 + CZZr

®n+1 = 3n+1 * Cp?r
S0
Cr,1°=21
R,2722 %7 %R, 1%r ~ °1, 19y
R,3~ 23+ Cr 2%r ~ Cp 2Vy
°R,n+1 = ?n+1 ¥ °R, n®r T~ °, 0>
and

1,17
°1,2 7 °R,1%r * ©1, 1%r

°r, 3= °R,2Yr * °f, 2%r

°L, n+1 7 °R,n¥r * C1, n%r

The sets of constants Cr 1 to cR n and cI 1 to cI p are the respective real and
imaginary sets of coeff1c1ents for the polynomlal left after the root is divided out. This

division is used only to determine the remainder terms CR, n+l and cI’ n+lr
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Division of a Complex Conjugate Pair of Roots from the Polynomial

The general polynomial (eq. (B38)) can be expressed in terms of a root and its com-

plement as

P(z) =(z -z )z - Er) (clzn'2 + czzn'3 ...+ Co 9%+ cn—l) +eCpZ+Cp g

The product, (z - zr)(z - Er), can be expressed as

2 — —
-z(zr+zr)+z P2

(z-Er)(z-zr)=z rZr

_ L 12 . . .
=(x +iy)° - (x + 1y)2xr + (xr + 1yr)(xr 1yr)

=x2-y2—2xx +x2

2 .
- P FYL 2iy(x - xr) (B41)

Since the problem being solved is by definition a real polynomial with x the only inde-
pendent variable, a general y does not exist. Therefore, equation (B41) can be written

in real algebra.

=\ _ 2 _ 2 2
(z-zr)(z—zr)—x - 2XX + X + ¥,

The general polynomial can be written as

P(x) = (xz - 2xx + xi + yi) (clxn'2 + czxn'3 +. .. cn_1> +C X +Cpyg

Equating powers of x
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2 =C
ag =Cg - Zczxr + cl(xf. + yf,)

_ _ 2 2 (B42)
a,=Cy 2c3xr +Cy xr + Yr)

_ 2 2
ap =Cp - 2¢, yX .+ cn—2<xr + yr)
_ 2 2
4ne1 T Cnyr Tt cn-l(xr + yr)
The equation set (B42) can be solved directly for the c's by starting from the top.
€194
2
Cg =ag+ 2c2xr - cl<xr + yg)
Cy =2, + 2CaX -c<x2+ 2) (B43)
4“4 3°r 2\Xp * ¥p
- 2 2
c,=2a,+ ch_lxr -Ch9 (xr + yr>
-a (Xz 2)
Cn+1 = %1 ~ Cp-1\Fr v Yy

In this case the polynomial remainder after the root and its complement are divided out

is

CpXp + Cpiq (B44)
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APPENDIX C

THE PROGRAM
Information for Users

The computer program is written in FORTRAN IV language and it is run in double
precision., On an IBM direct coupled 7044 - 7094 system the running time averages
about 0. 01 minute for an eighth-degree polynomial. The program has one systems sub-
routine called DUBIO which appears before the input READ statement. The function of
this subroutine is to allow double precision input and output formats on the NASA Lewis
computer. It is not needed on most other computers. For some applications it may not
be necessary to use the double precision input and output, but one should always remem-
ber that the output accuracy is a function of input accuracy.

The first card of an input data set has the number N of polynomial coefficients ex-
pected on the following data cards. The polynomial coefficients A(I) are read in order
beginning with the high degree end of the polynomial. The input format is shown in fig-
ure 5.

IIIII T T T T s T [ FAOIECT WUMBLR = T RRALYST
Input data L BHEET.

e (5 FORTRAN STATEMENT O

sssss 8|1 8 910 wz|is w3 s 7 B]I5 20 22228 Zufts 20 27 23 29 3 31 37 33 3433 56[37 383940 w1 e2fus k348 L7 4D 30 31 57 33 3[33 56 37 30 30 60l 61 62 8366 05 6al67 6¥ 60 Jo MM P M LT T 10

N U S e DEDREE ROUUE baasi DR R B DN DREEEN

Flelld folr input p ajirametelrs

[ . S IR R A TN,

N L T T AL T e e

Al(1) A1) ,v A(3) Second card
S 1 IDRUDE NDRON IDNDRE DEDDEN RESODESEaNN IUROTE MORESE PRORS e e
A(N-1) Al T s sava

PR B e B I B R e E e L E R TN BRI e e

R B S T e T B e B e e A T S Ry R LR e

I PR
Data forma t

R e B R [ mrasithr e Al butaihd BRI LR

7/ 1 7 /{/{//// WU T A L A T A T
e d 16

D24 D24] D2 4].16
RN - e : e e
D24l 16 D24|. 16 YT Y,
| Exaplpie: |P(z) o (x + [1)(x ] 1)(x s 0.000001 # 1) (xb s+ 0.0l00001 F 1)
A N PPN [P (PR I I BN
5
N B P
o]l D+01] 0.2 T D'205['0.260000000[0001 D+01
CE-N 1 D-05] 0.1 || D01
I.?‘l.i ‘, s|lTa v ’)1S k1S W 17 W[ 2022232 52‘!7‘"'”‘”’!!“‘Al"ul"”'“lﬂ‘“‘l'l’“l’“"u“”’lH;’”!5“”“,'.0""}‘1’“““‘7“!'1“”7‘"7&"1‘"1.7'.
“HASA-C-836 (REY. 9-ik~30) o

Figure 5. - input data.
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The polynomial relative error criterion constants, TOLRQ and TOLIQ, which are
defined near the beginning of the main program ROOTS, are based on 16-significant-
figure double precision capability. If the program is to be used with other than
16 -significant-figure machine capability, the constants in TOLRQ and TOLIQ should
be adjusted directly with the change in significant figure capability.

Note that the way the program is structured, meaningful analysis can only be done
if TOLRQ and TOLIQ are above the absolute error levels of computed polynomial
values. However, raising TOLRQ and TOLIQ decreases the root resolution capability
of a program. To allow for near maximum program root resolution capability, TOLRQ
and TOLIQ are internally adjusted to account for the greater number of computations
needed to evaluate a higher degree polynomial. In the Polynomial and Polynomial De-
rivative Evaluation section's discussion of ROOTS it was pointed out that the least capa-
bility occurs when roots are grouped. The TOLRQ and TOLIQ adjustments with
polynomial degree are based on roots being grouped up to degree ten. For higher degree
polynomials the probability of groups of more than ten roots is small, so the increase of
TOLRQ and TOLIQ with polynomial degree were somewhat leveled off.

A final comment concerns the use of ARATIO contour plots if a user is not satis-
fied with the computed roots or has reason to believe that a ratio of derivatives program
is not working properly for a particular problem. The polynomial coefficients can be
used in a little program to compute ARATIO values for two or three ND values on a
X - y grid over the troublesome area. Contour plots from the grid values can be a very
helpful aid in indicating where the roots should be. Values of POLY(ND - 1) in the ab-
solute error range will fog the issue, but such ranges are usually obvious on a plot.

Description of Program Variables

Symbol Description
A(D) polynomial coefficients beginning from high degree end
ARATIO absolute value of the ratio of successive ND derivative ratios,
[JPoLY(ND + 1)|/| POLY(ND) U/DPOLY(ND) |/|POLY(ND - 1)|]
B(I) coefficients of polynomial derivative
CA(Y) polynomial normalizing constant; also the calculated imaginary part of

polynomial coefficients at a complex root
CRATIO(I) imaginary part of a complex number derivative ratio

D value of the complex polynomial, POLY(ND - 1), squared
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DELTX
DELTY
DIR
DRATIO

DTHETA

DX

DXT

DYT

DzT

DZT2

D1
D2
D3

FACT

FK

HY
HYP

H1
I
ICHECK

real component of an independent variable step in the complex plane
imaginary component of an independent variable step in the complex plane
step direction indicator in the Taylor's series search for real roots

ratio of successive ND derivative ratios, [POLY(ND + 1)/POLY(ND)] /
[POLY(ND)/POLY(ND - 1)]

spiral angular increment (300) used in moving toward a root when known to
be between nearby roots in the complex plane

x-increment to estimated location of next root; also, a reference x step
when searching for a root known to be within a root group

normalized real part of complex number polynomial first derivative as
used in complex number Taylor's series solution for a new z

normalized imaginary part of complex number polynomial first derivative
as used in complex number Taylor's series solution for a new z

relative distance to root with plus sign in complex number Taylor's series
equation

relative distance to root with minus sign in complex number Taylor's
series equation

value of complex polynomial, POLY(ND), squared
value of the ND complex derivative ratio squared
value of the ND -~ 1 complex derivative ratio squared

ratio of x adjustment to previous x adjustment in Taylor's series ap-
proach to a root

multiple of coefficient for calculation of polynomial derivative

x adjustment toward a root by the Taylor's series approximation

x adjustment toward a root by complex Taylor's series approximation
y adjustment toward a root by complex Taylor's series approximation

magnitude of the square root term in complex plane Taylor's series approx-
imation for a new z

x backsteps in Taylor's series search for real roots
polynomial coefficient subscript for dimensional variables

a logical parameter which activates a running record and update of XHIGH
and XLOW
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IDIR

IMSURE
INK

IR
IREAL

ISIGN
ITRIG

XM

JTRIG

KTRIG

LIMIT

LTRIG

MULT

NC

NDEG
NDRV

46

logical direction indicator in the Taylor's series search for real roots

index of previous nonzero polynomial coefficient in the computation of a
polynomial value

logical indicator of the certainty of a real root remaining in the polynomial
logical indicator of the direction of scaling
system input tape number

logical indicator of the type of root sought (IREAL = 1 for real roots,
IREAL = 0 for complex roots)

routing device for setting spiral direction

routing device of how polynomial approaches the x-axis in the Taylor's
series search for real roots

system output tape number

logical indicator used when a pair of root candidates need to be investigated
current number of roots found

routing device

index used in dividing out roots

routing device in ratio of derivative analysis for roots that are difficult to

resolve

logical device for counting the number of successive zero coefficients in a
polynomial

logical indicator that a computed polynomial value is probably in the abso-

lute error range
logical device and counter used when known to be between or among roots
degree of polynomial derivative
number of roots at a root point
number of polynomial coefficients (degree of the polynomial plus one)

index used in scaling a polynomial, also a counter during preliminary
checks

highest order polynomial derivative needed in current analysis
degree of the current polynomial

order of the polynomial derivative



NEXP
NEXPS

NK
NM

NND
NUM
OARAT
OAX

OAY
ODRAT

OPOLY1

OPOLY2
ORATIO
PHI

P(I)
POLY(I)
POLY1R

PXHIGH
PXLOW

Q

Q1
RA
RA(T)

RATIXI)

exponent hexadecimal order of magnitude factor used in polynomial scaling

exponent hexadecimal order of magnitude factor used in initial polynomial
scaling

index used in polynomial scaling

index used in scaling a polynomial, also a counter during preliminary
checks

temporary storages of ND
number of roots in the polynomial
value of ARATIO for previous iteration

reference value of ARATIO for the x-step in setting up the spiral refer-
ence angle

value of ARATIO from the x-step in setting up the spiral reference angle
value of DRATIO for previous iteration

most recent good value of POLY(1)

most recent good value of POLY(2)

value of RATIO(ND - 1) from previous iteration

complex plane angle of square root term in complex number Taylor's
series solution for a new z

normalized polynomial, P(1), or a polynomial derivative when 1> 1
polynomial, POLY(1l), or a polynomial derivative when I> 1

ratio of present polynomial value to last Taylor's series iteration polyno-
mial value

value of normalized polynomial at XHIGH

value of normalized polynomial at XLOW

square root term of quadratic equation

square root term of Taylor's series approximation for real root location
polynomial ratio used to estimate location of next root

temporarily real part of polynomial coefficient at a complex root

radial component of a spiral in the complex plane

ratio of a polynomial derivative to the next lower order polynomial deriva-
tive
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RATIOI
RATIOR
RRATIO(I)
SCALE
SLOPE

SRATIO

SX1
SXTIYI
SX12

SYI
THETA
THETAO
TOLI
TOLIQ

TOLR
TOLRQ

X

XCON
XCPILX
XDT

XH
XHIGH
XI

XL
XLAST

48

imaginary part of polynomial ratio used to estimate location of the next root
real part of polynomial ratio used to estimate location of next root

real part of complex number derivative ratio

hexadecimal order of magnitude factor used to scale polynomial roots

slope of least squares line fit of the hexadecimal logarithms of the polyno-
mial coefficients

parameter used in setting step size when between or among roots of a
group, YPOLY(ND + 1) * POLY(ND - 1)

sum of XN for determination of SLOPE

sum of the product of XN times YI

SXI squared

sum of YI for determination of SLOPE

local angular coordinate of a spiral in the complex plane
reference angle of a spiral in the complex plane
complex root resolution distance criterion

probable absolute error of a computed normalized polynomial value in the
complex plane

real root resolution distance criterion

probable absolute error of a computed normalized polynomial value along
the x-axis

independent polynomial variable or real component of independent complex
variable

one of the constants used to determine DELTX and DELTY for a spiral
x-coordinate at which the search for complex roots is begun

real part of the denominator of the complex Taylor's series approximation

for a new 2z
temporary new value of x
closest x definitely known to be greater than the value of the root sought
initial x value in the search for a new root
reference x when adjusting to a new x value between XHIGH and XLOW

x value of a previous iteration



Eest

k

XLOW
XMULT
XN

XNT

XOLD
XP(I)
XPN
XPOLE
XPOLY(I)

XQ

XR(I)

XROOT(I)
XX

Y

YCON
YCPLX
YDT

YI

YLAST
YNT

YOLD
YP(I)
YPOLE
YPOLY(D)

closest x definitely known to be less than the value of the root sought
number of roots at a root point

number of a polynomial coefficient, which is the independent variable in
the determination of SLOPE

real part of the numerator of the complex Taylor's series approximation
for a new z

x value of a previous iteration during resolution of a root

real part of normalized complex polynomial or polynomial derivative
temporary storage of x or XP(I)

x-coordinate of spiral pole in the complex plane

real part of complex polynomial or polynomial derivative

real part of square root term in the complex number Taylor's series solu-
tion for a new z

polynomial remainder or real part of polynomial remainder after a root is
divided out

x~coordinate of a root

temporary storage of x

imaginary component of independent complex variable

one of the constants used to determine DELTX and DELTY for a spiral
y-coordinate at which the search for complex roots is begun

imaginary part of denominator of the complex number Taylor's series ap-
proximation for a new 2z

initial y value in the search for a new root, also hexadecimal logarithm
of a polynomial coefficient

y value of previous iteration on the spiral

imaginary part of the numerator of the complex Taylor's series approxi-
mation for a new 2z

y value of a previous iteration during resolution of a root
imaginary part of normalized complex polynomial or polynomial derivative
y-coordinate of spiral pole in the complex plane

imaginary part of complex polynomial or polynomial derivative
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YQ

YR(T)

imaginary part of square root term in the Taylor's series approximation

for a new z

imaginary part of the polynomial remainder after a root is divided out

YROOT(I) y-coordinate of a root

YY temporary storage of y
ZCON one of the constants used to set up the spiral increment
Program Listing
$IBFTC RCCTS
DCUBLE PRECISION A, ARATIO, B, CA, CRATIO, D, D2, FK, P, POLY, Q,
1 RA, RATIO, RRATIO, SCALE, X, XHIGH, XLAST, XLOW, XP, XPN, XPOLY,
2 XR, XRCCT, Y, YP, YPOLY, YR, YROOT
CCVMMCN /FOLYN/ ARATIO, D, DELTX, DX, D2y FKy I, INK, IREAL,
1 ITRIG, IWy Jy JTRIGy Ly LIMIT, LTRIG, M, ML, MULT, N, NC, ND,
2 NCEGy NLRV, NEXP, NEXPS, NK, NM, NUM, OARAT, Q, SCALE, SRATIO,
3 TCLI, TCLIQ, TOLR, TOLRQ, X, XI, XLAST, XMULT, XOLD, XPN, Y,
4 A{1C0), B(100), CA(100), CRATIO(100), P(100), POLY{100)y RA(100),
5 RATIC(1CO), RRATIO(100), XP{1D0), XPOLY(100), XR({100), XROOT(100)
65YP(100), YPOLY(100), YR(100), YROOT(100)
ITEST = 1
IF (ITEST.EQ.2) CALL DUBIO
C -——- A(l) ARE COEFFICIENTS FOR THE POLYNOMIAL, POLY(X) = A(N)%X%%N
C ——= % A(N=1)#X2%(N-1) 4 ==== + A(2)%X**2 + A(1)*X + A(Q), THE COEFFI-
C -~- CIENTS MUST BE INPUT IN ORDER. START THEM FROM THE HIGH DEGREE
C --- ENC CF THE POLYNOMIAL.
IR = §
Iw = 6
€ REAC (IR,1000) N, (A{(I)yI=1,N)
IF (NJ.LE+I) WRITE (IW,1010)
IF (N.GT.100) WRITE (IW,1020)
WRITE (Iw,1030) (A(I),I=1,N)
NUVM = N -1
J =20
NC = NuW
IF (NC.GT.10) NC = 9 + NUM/10
TCLRC = £.,0%2,0%*NC*1,0E-16
TCLR 5 SCRT(TOLRQ)
TCLIC = Z.0**NCx1,0E-15
TCLI s SCRT(TOLIQ)
NC = 1
C --- IF THE POLYNOMIAL BEGINS WITH ZERO COEFFICIENTS LOWER THE
C —--- DEGREE AFPRCOPRIATELY.
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DC 6 I=1,N

IF (A(I).NE.O.O0) GO TO 7

NC = NC + 1

CCNTINUE

GC TC 5

IF (NC.EC.1) GO TO 9

DC 8 I=NC,N

Nv = 1T - NC + 1

A(NMY = A(]1)

N=N-=-NC +1

NUVM = N ~ 1

X1 = .0

NCEGC = N-1
TAKE CUT ANY ZERQO ROOTS FIRST.,

FK = ARS{A(1l))

DC 1C I=2,NDEG

IF (ABS(A(I)).LT.FK*0.01%*TOLRQ) GO TO 10
FK = ABS(A(I1))}

CCNTINUE

IF (ABS{2{(N)/FK).GT,C,01*TOLRQ) GO TO 12
X = CaD
J=Jd+1
XRCCT(4) = O
YRCCT(J) = O
XR(J}
YR(J)
N = N
6C 1C
IREAL

Ho 01 uwn

et

SCALE POLYNCMIAL SO RDOTS ARE APPROXIMATELY OF ORDER ONE FOR
RCCY RESCLUTION COMPUTATION PURPODSES. A LEAST SQUARES FIT OF THE
LCCS CF THE POLYNOMIAL COEFFICIENTS TO A LINE IS USED.

SXI = 0.C
$X12 = 0.0
SYI = D€
SXIYI = C.0
NC = C

FK = ABS(A(1))
CC 14 I=1,N
IF (ABS(A(I)) LT.FK*0,01%TOLRQ) GO TO 14

NC = NC + 1

FK = ABS({A(1l))

XN = FLCAT(I)

YI = C.3€¢067376%xALOG(FK)

SXI = SXI + XN

SXI2 5 SYXI2 + XN#**®2

SYI = SYI + Y1

SXIYI = SXIYI + XN*Y]

CCNTINUE

SLCPE = (SYI/FLOAT(NC) - SXIYI/SXI)/U(SXI/FLOAT(NC) -~ SXI2/SXI)
FK = 0.36067376%ALOGI{ARS(A(1)))
NC = FK

NK =

INK = 1

IF (SLOPE.GT.0.0) GO TO 15
SLCPE = -SLOPE

INK = -1
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pDC 1€ I=1,10
IF (SLOPE.LT.0.5) GO 7O 17
NK = NK 4 INK

SLCPE = SLCPE - 1.0
NEXP = NK

NEXFS = NEXP

SCALE = 16.0D0*®*NEXP

IF (NK.EC.0.AND.NC,EQ,0) GO TO 19
DC 18 I=1,N

NVM = NK*(I-1) + NC

A(I) = A(I)/16.0C0%*NM

IF (N.LE.3) GO TC 570

IF (IREAL.EC.O0) GO TC 280

FACT = 2.0
ICIR =1
YCPLX = 1.0

INITIALIZE PARAMETERS. X IS THE INDEPENDENT VARIABLE. J IS
THE AMUMBER CF ROCTS FOUND. FACT IS AN X STEP SIZE FACTYOR., IDIR
INCICATES THE DIRECTION TO MOVE ALONG X. IREAL IS A TRIGGER TD
INCICATE THE SEARCH FOR REAL OR IMAGINARY ROOTS. OCONLY REAL
ALGERRA IS USED WHEN IREAL IS A POSITIVE INTEGER. H IS A DELTA X
INCREMENT. ITRIG IS A ROUTING DEVICE. [IT BASICALLY GIVES AN
INCICATICN CF HOW THE POLYNOMIAL APPROACKHES THE X AXIS. JTRIG IS
A RCUTING CEVICE WHEN HIGHER DERIVATIVES ARE NEEDED.

H = C.0
CIR = ICIR
IMSURE = O
ITRIC C
IXV =
JTRIG
KTRIG
LTRIC
X = XI

hanon

aNa¥a)

ND IS THE NUMBER OF DERIVATIVES CALCULATED.
NDRV IS A PARTICULAR DERIVATIVE.

NC = 2

THIS PROGRAM USES A QUOTIENT OF SUCCESSIVE DERIVATIVES METHOD
IN BCTH THE REAL AND COMPLEX REGIMES TO PINPOINT THE VALUES AND
THE MULTIPLICITY OF THE ROOTS. SINCE THE REAL ROOTS ARE EASIER TQ
WCRK WITF, THEY ARE FOUND FIRST. [IF THERE ARE REAL RODTS THE
DEGCREE (OF THE POLYNDMIAL IS DECREASED BEFORE COMPLEX NUMBERS ARE
USEC.

ICFECK = O
DC 32 I=1,N
BUIY = A(I)
NCEG = N-1
¥ = NCEG

NCRV = O

CALL RPCLY

IF (ICHECKeEQesD«CR.ABS{P(1))GT.0.5%*TOLRQ) GO TO 4Q
IF (ICHECK.GT.0) GO TO 38



3¢
38

4C

42

44

4¢

4¢

46

52

51
58

56

X = {(XLCw + X)/2.0

GC TC 28

X = (XHICH + X)/2.0

GC TC 28

ICHECK = 0

[F {ITRIC.EQeO.OR.ABS(P(1))4LE.O0.5%¥TOLRQ) GD TO 48
IF (INSURE.EQ.0) GO TO 44

IF (P(1)/PXHIGH.LT.0.0) GO TO 42

XHICGE = X

PXHIGCH = P(1)

GC TC 48

XLCR = X

PXLCW = F(1)

GC TC 48

IF (PCLY(1)/0POLY1.GT.0.0) GC TO 48
I¥MSURE = 1

IF (CELTX.LT.0.0) GO TO 46

XHICE = X

PXFICH = P(1)

XLCW s XLAST

PXLCW = CPCLYLl/B(N)

GC TC 48

XHIGK = XLAST

PXHIGH = OPCLY1/B(N)

XLCwW = X

PXLCW = F(1)

IF (ARS(F(1)).LT,TOLR.,OR,JTRIG.EQ.2) GO TO 160
IF (IREAL.EQ.O0) GO TO 50

IF (ITRICeNE.O+OR.ABS{P(2)}.GT.TOLR) GO TO 50
H = 0.1*CIR

IF (ABS(FOLY(1)) .GE.ABS{POLY(3))) GO TO 49

IF (POLY(1)/POLY(3).LT.0.0) H = -DIR/(POLY(1}*POLY(3))
DELTX = ¢+

DIR = 1.C

ITRIG = -1

GC 7C 10z

REAL RCOTS ARE THE X VALUES WHICH MAKE P{1l) = 0.0 START AT
X = C.0., THE NEXT X IS DETERMINED WITH A 3 TERM TAYLORS SERIES.

QL = (POLY(2)/POLY{3))*%*2 — 2,0%POLY(1)/POLY(3)

1IF ¢1 IS LESS THAN ZERO, P(2) MAY CHANGE SIGN BEFORE P(1)
CRCSSBS THE AXIS.

IF (CI.LT.0.0.0R.ITRIG.EQ.1) GO TO 70

IF (JTRIC.EQ.O) GO TO 57

IF (PCLY(1)/0POLY1.LT.0.0) GO TO 56

IF (ITRIC.LT.0) GO TO 52

IF (POLY(2)/POLY(1)*H) 57,57,66

IF (POLY(2)/0POLY2.GE.0.0) GO TO 57

DIR = 1,.C

ITRIC = -1.0

IF (CABS(P(2)).LT.TOLRQ) POLY(2) = TOLRQ*CA{2)
IF (ABS(FOLY(3)/POLY(2)).GT.0.01) GO TO 60
H = -POLY(1)/POLY{2)*DIR

IF (X) 644+65,64
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62
63

64

6¢

68

1C

C ===

74

C ===
C ===

54

IF (ABS{F(3)).LT.TOLRQ) GO TO 62
IF (ABS(F(2)).JLT.TOLRQ) GO TO 61
H = PCLY{2)/POLY (3)*{SQRT(Q1)/ABS{POLY(2)/POLY(3)) - 1.0)
GC TC 63

H = CIR*SQRT(Q1l)

GC TC 63

H = - PCLY({1)/POLY(2)

IF (ABS(t)elLT.100.0*%TOLR.AND.ABS(POLY(2)/POLY(1)).GT+.01/TOLR)
X GC TC 56

IF (ABS({F).LT.1.00) GO TO 65
IF (ABS({X).GT.0.1) GO TO 64
H = H/ABS(H)*0.1

GC TC 65

IF (H/XeCTe0e5) H = Q0a5%X
IF (H/XalTe-1e5) H = =1,5%X
BELTX = F*CIR

GC TC 68

DELTX F

ITRIG ITRIG + 1

JTRIC -1

GC TC 10¢

IF (IREAL.EQ.O) GO TC 275

STATEMENTS 70 THROUGH 77 INVESTIGATE Q1 LESS THE O,

IF (ITRIC.CT.15) GO TO 110
IF (ITRICoGT.10.AND.ABS{P(1})).GT.1.0/TOLRQ) GO TO 110
IF {(JTRIC.GT+0.0R.ITRIG.GE.2) GO TO 74

H1 = -PCLY(2)/POLY(3)*DIR
IF (ITRIC.EQe0«AND.ABS(H1)4GT.1.0) H1 = H1/ABS(H1)
H o= Kl

IF (X«EQ.XI) GO TO 73

IF {ABS(F1/X)eGTel.0) H1 = HI1*¥ABS{X/HL)
H = K1

IF (X -xI)*DIR/H.LT.0.0) H = -H

IF (ITRIC.LE.O) ITRIG = 1

JTRIC = 1
PCLY1IR = 1.0
GC TC 1¢C

PCLY1R = PCLY{1)/0POLY]

TF (JTRIC.LT.0) H1l = H

IF (PCLY1R.LE.O0.O0) GO TO 75

IF (PCLY{2)/0POLY2.1.T.0.0.AND.ITRIG.LT,2) GO TO 76

IF FOLY1R IS GREATER THAN 0.5, NO ROOT IS EXPECTED IN THIS

REGICN CF C1 LESS THAN 0.

IF (PCLY1R.GT.0.95) GO TO 80
Hl= F1*F2CT

GC TC 78

ITRIC = -1

IF (FACT.LT.1.0) GO TO 77
FACY 5 0.5

H = Kl

H = -H¥F2CT

GC TC 90



C ~=-- THE SIGN OF THE SLOPE OF POLY(X) HAS CHANGED. THE POINT OF
C ——- INTEREST WAS BYPASSED. HALF STEP BACK.

7¢&¢ IF (ARS(F1).LT.TCLR) GO TO 80
77 FACT= 0.5

HI= ~-H1*FACT
T8 XCPLX = X

YCPLX = SQRT(ABS(POLY(1)})

GC TC 16¢C

- IF STATEMENT 80 IS REACHED, POLY(X) DID NOT CROSS THE X AXIS.
~== CCNTINUE IN THE SAME DIRECTICON THAY WAS STARTED EVEN THOUGH P(X)
—-== IS FCVINC AWAY FROM THE X AXIS. THE STEP SIZE 1S DOUBLED UNTIL
—--- THE SECCAC CERIVATIVE CHANGES SIGN.

s XeNeXg]

8C IF (IREAL.EQ.0O) GO TO 275
IF (ITRIG.LT.2) H = 0.1%*H
FACT = 2,0
ITRICG = ITRIG + 1
H = H22,C
9C IF (H.EC.0.0) H = 0,1%*DIR
DELTX = F
GC TC 10¢
10C DELTX = ¢1
102 OPCLYZ2 = PCLY(2)
IF (OPDLY2.EQ.0.0) DOPOLY2 = 1.0E~-17
104 IF (ABS{X).GT.1.0) GC TO 106
IF (ABS(TELTX).LT.TOLRQ) GO TO 160
GC TC 108
10€ IF (ABS(CELTX/X).LT.TOLRQ) GC TO 160
108 QgPCLY1 = PCLY(1)
XLAST = X
X = X + CELTX
IF (IMSURE.EQ.0) GO TO 30
IF (XaLE.XHIGH.AND.X.GEXLOW) GO YO 320
X = {XHICH + XLOW)/2.0
HI s (XHIGH - XLOW)/2.0
IF (XHIGF.EQ.XLAST) #H1 = —-H1
DELTX = +1
GC TC 30

C —-- STATEMENT 110 IS REACHEC WHEN THERE ARE NO REAL ROOTS FOUND
C --- IN THE CIRECTION STARTED. GO BACK TO XI AND WORK THE OTHER
C --- DIRECTIOM IF IT HAS NOT BEEN INVESTIGATED,

1IC IF (IMSURE.EQ.0) GO TO 115
CELTX = (XHIGH -~ XLOW)/2.0
IF (X.EQ.XHIGH) DELYTX = —DELTX
GC TC 10z

11€ IF (ICIR) 130,130,120

12C ICIR = -1.0
X = X1
GC YC 20

C ==~ STATEMENT 130 IS REACHEC IF NO REAL ROOTS WERE FOUND IN
€ --- EITHER SIDE OF X s XI. SEARCH FOR COMPLEX ROOTS.
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13C IREAL = C
X = XCPLX
Y = YCPLX
GC TC 28C
14C IF (ABSH(F
CPCLYL1 =
XLAST = X
IF (ITRIG
142 TF (IMSUFR
XH = X +
IF (XE.LT
IF (LTRIC
IF (XTRIC
IF (LTRIC
IF (ABS(F
XL = 0.0
IF (CELTX
142 IF (ABSI(F
IF (X«NE,.
XL = "0.5
IF (XHIG}H
XL = SQRT
XL 3 (XHI
144 DELTX = X
ICHECK =
GG TC 1l4¢
14 IF (ABSH(F
IF (X.NE.
XL = =045
1F (XLOW.
XL s SQR7
XL = (XLC
14¢ DELTX = X
ICHECK =
148 IF (LTRIC
KTRIC = C
IX¥ = 0
NC = 2
14¢ CLTRIG = C
15¢ X = X + €
H1 = CELTY
GC TC 30
152 ¥ = ¥ = 1
DPC 154 I=
FK = N -
154 B(1) = Bl
GC TC 35
158 IF (LTRIC
158 X = (XHIC
GC TC 251

-—- STAT
-~- FETHCC FC

16C IF (ITRIC
IF (ABSI(F
IF (NC.EC
IF (ABS(F
LIVMIT = C
GC TC 18C

{1)).LT.0.5*TOLRQ) GO TO 142
PCLY (1)

«EC,0) ITRIG = =1

E.EQ.0) GO TO 150

DELTX

e XHIGH, AND XH.GTXLOW) GO TO 150

«EC.1) GO TO 193

«EQ.2) GO TO 1244

oLT.0) LTRIGC = LTRIG - 10

XHIGH) « LT TOLRQ.ANDABS{PXLOW).LT,TOLRQ) GO TO 155

«GT.0.0) GO TO 145

XLCW).LT.TOLRQ) GO TO 145

XLOW) GO TO 144

*DELTX

+CGE.X-DELTX) GO TO 144

{ABS(PXLOW))

GH = XLOW)*XL/{XL + SQRT(ABS(PXHIGH)))

L + (XLOW ~ X = XL)/(0.7 +0.5%ALOG(ABS{PXLOW*2.0/TOLRQ)))

-1

XHIGH).LT.TCLRQ) GO TD 143

XHIGH) GO TC 146

*DELTX

LE.X-DELTX) GO TO 146

(ABS{PXHIGH) )

W - XHIGH)*XL/(XL + SORT(ABS{PXLOW)))

L 4+ (XHIGH =X =XL)}/ (0.7 +0.5%ALOG(ABS(PXHIGH*2.,0/TOLRQ)))
1

.LT.0) GO TO 150

ELTX
X

14¥
NCRV = 1 + 1
I)*FK

«LT.0) GO TC 201
H + XLOW)}/2.0

EMENTS 160 THROUGH 250 ARE THE RATIOD OF DERIVATIVES
R REAL ROOTS.

«GE.2) GO TO 80

(1)) «GT .TOLRQ.AND.ABS{POLY{2)/POLY(1)).LT.1l.0) GO TO 165
eNCEG.AND.LTRIG.EQ.0) GO TO 170

{ND-1)).LT.TOLRQ) GO TO 162
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181
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188

LINVIT = 1}

IF (JTRIC.LT.2) GO TO 164

IF (ABS(FI{ND)Y.GT.TOLRQ) GO TDO 180
LINIT = 4

GC T¢ 251

IF (ABS(F(2)).GT.10.0%TOLR) GO 7O 180
NC = ND 2+ 1

GC TC 152

QI = (PCLY(2)/POLY(3))*%2 - 2,0%POLY{1)/POLY(3)
JTRIG = 1

KTRIC =

LTRIG = ¢

NC = 2

XCPLEX = X

YCPLX = C.001

IF (C1) 167,168,168
ITRIC = 1

GO TC 80

IREAL = 1

GC TC 58

IF (ABS(F(ND)}.LE.O.5%TOLRQ) GO TO 252
RATIC(ND) = POLY(ND+1)/POLY(ND)

LINMIT = C

IF (ABS(RATIO(ND)}).LT.0.5/TOLR) GO TO 175
TF (ABS(F(NC-1)).LT.TOLRQ) GO TO 176
RATICI(ND-I) = POLY(ND)/POLY(ND-1)

IF (ABS(RATIO(ND)/RATIO(ND-1)).GE.1.0) GO TO 180
NC = ND + 1

GC TC 24°¢

IF (ABS(F(ND-1)).6T.0.5%TOLRQ) GO TO 180
DELTX = TOLR

GC TC 14C

IF (JTRIC.GE.2) GO TC 181

JTRIG = 2

CALL SCALER

IF (NK.EC.0) GO TO 181

X = X/16.0CO%2NK

ITRIG ¢

JTRIC é

I¥SURE = O

GC 7C 30

IF (ABS(FIND-1)).LT.0.5*%TOLRQ) POLY(ND-1) = D.5%*TOLRQ*CA{ND~1)
RATICI(ND-1) = POLY(ND)I/POLY(ND-1)
RATIC(ND) = POLY(IND+1)¥/POLY(ND)

DRATIC = RATIO(ND)/RATIOQ(ND~-1)

ARATIC = ABS(DRATIO)

NEAR A ROOT WITH MULTIPLICITY EQUAL TO OR GREATER THAN ND -1,
THE ABSCLUTE VALUE OF ARATIO SHOULD BE LESS THAN ONE. IF ARATIO
IS GREATER THAN ONE, EITHER A ROUNDOFF ERROR IS ENCOUNTERED OR WE
ARE NGT RELATIVELY CLOSE TO A ROOT. IN EITHER CASE USE RATIO{ND)
TG FMCVE ». HOWEVER, LIMIT THE MAGNITUDE OF RATIDI(ND) SO THAT THE
MULTIPLICITY CHECK CAN BE MADE WITHIN COMPUTER ACCURACY.

IF (KTRIC.EQ.1l) GO TG 240

IF (LTRIC) 200,186,190

IF (PRATIO0.LT.1.0) GO TO 210

SRATIC > SCRT(ABS(RATIO(ND)*RATIO(ND-1)))
IF (SRATIO.LT.1.0} SRATIO = 1.0
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18C

19¢
16¢

197
1S€

16¢

2CC
201

2C2
202

2C4
20¢

2C¢

207

2CE

IF (LTRIC.EQ.1) GG TQ 192
IF (LTRIC.CT.1) GO TQ 1195
XX = X

IXv = 1

JTRIC = 2

LTRIC = 1

OCRAT = CRATIO

DELTX = C.1/SRATIO*DIR
oX = CELTX

GC TC 14C

IF (CRATIO/ODRAT.LT.0.0) GO TO 194
IF (ARATIO.LT.ABS{ODRAT)) GO TO 196

X = X - CELTX
DELTX = -DELTX
DX = DELTX

GC TC 19¢

CELTX = -DELTX*ARATIC/(ARATIC + ABS(ODRAT))

CCRAT = CRATIO
GC TC 14C

IF (CRATIO/0DRAT.LT.0.0) GO TO 194

IF {(LTRIC.LT.O0) GO TC 196

IF (ARATID.GT.ABS{ODRAT)) GO TO

IT (ARATIC.LE.0.45) GO TO 230

ITF (LTRIC.EQ.B.,AND.IMSURE.EQ.0) GO TO 272

DELTX = Z.0*DELTX
OCRAT = CRATIO

199

IF (LTRIC.GE.Q) LTRIG = LTRIG + 1

GC TC 14C

IF (IMSURE.EQ.0) GO TO 276
LTRIG = -1

IXv = 0

GC TC 197

IF (LTRIC.GE.-10) GO TO 195
IF (LTRIC.LT.-11) GO TO 202

LTRIG = -2
X = XX
DELTX = -DX
GC TC 14C

IF (LTRIC.LT.~12) GO TO 204
IF (ANC.EC.2) GO TO 158

NC = ND - 1

DX = (XHIGE - XLCW}/10.0
DELTX = [X

X = XLOW + CX

LTRIEC = ~-13

GC TC 30

IF (ARATIO.LT.0.45) GO TO 230
IF (LTRIC.LT.-13) GO TO 206
GC TC 207

IF (LIMIT.CT.0) GO TO 207

IF (CRATIO/ODRAT«LT.0.0.0R.LTRIG.EQ.-15) GO TO 209

X = X + CX

LTRIC = -14

IF (X«GE.XFIGH) GO TC 203
CCRAT = CRATIO

GC TC 30
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21¢

212

218

21¢
22C

22¢€
22E

226

23e

DELTX
LTRIG -15

CORATY CRATIO

GC TC 15¢C

IF (JTRICL.EQ.4) GO TO 212

IF (ARATIO - 0.45) 230,230,215

JTRIG = 2

NC = ND - 1

GC TC 3¢

IF (LIMIT.EQ.0.OR.JTRIG.EQe3) GO TO 220
GC TC 18¢

JTRIG = 4

IF (NC.EC.NDEG) GO TQO 225

NC = ND + 1

GC TC 152

LTRIGC = C

DELTX = =1.0/RATIO(ND}

IF (JTRIGC.EQe4) CELTX = -1.0/RATIO(ND-1)
JTRIG = 2

GC TC 14C

IF (LIMIT.EQ.1) GO TC 248

IF (LTRIC.LT.Q) GO TO 229

NC = ND - 1

GC TC 30

DELTX = CX

GC TC 207

CELTX*DRATIO/ (ODRAT - DRATIO)

RATIC(ND~1) IN STATEMENT 230 IS THE LAST DERIVATIVE RATIOD
THAT SHCULLC APPROACH INFINITY AS X APPROACHES A ROOT VALUE.
THE PROXIMITY OF X TC THE ROCT IS 1.0/RATIQ(ND-1).

THE MULTIPLICITY OF ROOTS AND THE ESTIMATE OF THE NEXT ROOTS
ARE NMADE WHEN THE POLYNOMIAL DERIVATIVE RATIO LIES BETWEEN 0.5TOLR
ANC 5.0TCLR. THIS MEANS THAT ROOTS CLOSER THAN TOLR TOGETHER
CANNCT BE RESOLVED FROM ONE ANOTHER, THE ACTUAL X VALUE OF THE
RCCTy HCWEVER, IS IMPROVED SOMEWHAT IN STATEMENT 250,

IF {LTRIC.GT.0) LTRIG = O

IF (AC.EC.2) JTRIG = 2

IF (JTRIC.EQ.3) GO TO 218

IF (ABS(RATIO(ND-1)).LT.5.0/TOLR) GO TO 235
IF (ABS({FRAYIO(ND-1}).LT,1.,0/TOLRQ) GO TO 233
CELTX = 1.0/ (TOLR*RATID(ND-1})

GC 7C 15¢C

DELTX = -0,2*TOLR

GC TC 15¢C

IF (ABS{RATIG(ND-1)).GT.1.,0/TOLR) GO TO 242
IF ( LIMIT.GT.0) GO TO 238

CBELTX = -«1,0/RATIO{(ND-1)

GC TC 14¢C

IF (ABS(RATIO(ND-1}).LT.1000.0} GO TO 251
XCLC = X

CRATIC = RATIO(NC-1)

KTYRIC

= 1
BELTX = C.1/0RATIO
CRATIC = SCRT{ABS{ORATIO))
GG TC 15C

59



24C IF (ARATIO.GE.D.45) GO TO 241
IF (ABS{RATIO(ND-1)).LT.ORATIO) GO TO 241
IF (LIMIT.EQ.O0) GO TC 248
DELTX = Z.,0%DELTX
GC TC 14C
241 X = X0OLD
GC TC 251
242 1F (NC.LE.2) GO TO 245
IF (LIMIT.GT.0) GO TC 1245
IF (ABS(FIND-2}) .GE.0.5*TOLRQ) GO TO 243
LINIT = 1
PCLY(ND=-2) = 0.5*TOLRQ*CA(ND-2)
242 RATIC(NC-2) = POLY(ND-1}/POLY{ND=-2)
ARATIC = ABS{RATIO(ND-1)/RATIO(ND-2))
IF (KTRIC.EQ.2) GO TO 244
IF (ARATIO.LT.0.53) GO TO 248
IF (IXM.EQ.0) GO TO 226
CARAT = PRATIO
XPN = X
KTRIG = £
GC TC 241
244 IF (ARATIC.LT.0.53) CO TO 248
IF (ARATIO.GT.ABS{ODRAT)) GO TO 1244
IF (LIMIT.EC.O0) GO TO 228
GC TC 24¢
1244 X = XPN
KTRIG = C
IX8 = 0
DELTX = (C.C
GC TC 14¢

C -—-- THE MULTIPLICITY OF THE ROOT AND ITS VALUE WITHIN TOLR ARE
C --- NOW AT HANC. ESTIMATE THE X LOCATION OF THE NEXT RODT.

245 TF (ABS(FOLY(3)).GT.ABS({POLY(1))) GO TO 248
1245 IF (IXM.EQ.Q0) GO TO 248
24€ IXN = 0O

247 DELTX = Z.C0%(XX - X)
LTRIC = C
GC TC 14¢C

248 MULT = NC - 1
XMLLT = MULT
IF (NCEG - MULT.LT.3) GO TO 250
RA = 1.0/({XMULT + 1.0)%RATIG(ND)
XI = X =-1.,0/RA

25C X = X = 1.0/RATIC(MULT)
GC TC 25°¢

251 NC =1

25z MULT = NC
XI = X%

_— NUMEER THE ROOTS AND DIVIDE THEM OUT OF THE POLYNOMIAL.

28 DC 270 K=1,MULT

Jd = J +1
XRCCT(J) = X*SCALE
YRCCT(J) = 0.0
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N = N=1
IF (N.EC.1) GO TC 265
DC 260 1=2,N

26C A(I) = A(I) + X*A[I-1)

265 XR{J) = 1.0 + X¥A(N)/A(N+1)
27C YR(J) = C.0
GC TC 19
27z X = XX
GC TC 278
27¢ IREAL = -1

27€ X = X - CELTX
278 Y = SQRT(ABS(POLY{1)))
28C CALL COMPLX
IF {IREAL.LT.2) GO TOQ 19
IREAL = (C
GC TC 252
57C CALL CED
10CC FCRMAT (13/1(3D24.16))

101C FCRMAT {(//25X+7BHERROR —-—--- THE DEGREE OF THE POLYNCMIAL IS LESS T
XHAN CNE. THERE ARE NO RCOOTS. )

102C FCRNAT (//37TX+55HERROR —--- THE PROGRAM IS ONLY DIMENSIONED FOR N =
X 1CC. )

103C FCRMAT (1H1//7/31X,70HTHE INPUT POLYNOMIAL COEFFICIENTS. THEY ARE
X IN CRDER IF READ IN ROWS. // (2X,5D24.16))
GC T1C 5
ENC

SUBRCUTINE RPOLY

C --- THIS IS THE BASIC ROUTINE FOR FINDING THE VALUE OF A REAL
C --- NUVBER PCLYNOMIAL AND ITS DERIVATIVES. P( ) ARE THE POLYNDMIAL
C -=-- ANC ITS CERIVATIVE VALUES NORMALIZED BY B(N),

CCOLELE PRECISION A, ARATIO, B, CA, CRATIO, D, D2, FK, P, POLY, Q,
X RA, RATIO, RRATIO, SCALE, X, XLAST, XP, XPN, XPOLY, XR,

X XRCCT, Y» YP, YPCOLY, YR, YROOT

CCVMMCN /FOLYN/ ARATIO,y D, DELTX, DX, D2, FKs I, INK, IREAL,
1 ITRIG, IW, Jy JTRIG, L, LIMIT, LTRIG, M, ML, MULT, Ny NC,s ND,
2 NCEGs NCRV, NEXP, NEXPS, NK, NM, NUM, OARAT, Q, SCALE, SRATIOD,
3 TCLI, TCLIQ, TOLR, TOLRQ, X, XI, XLAST, XMULT, XOLD, XPN, Y,
4 A(1CO), B(100)y CA(100), CRATIO{(100)y P(100), POLY{100), RA(100},
5 RATIC(1CO), RRATIO(100), XP(100), XPOLY(100), XR(100), XROOT(100)
6,YP(1C00), YPOLY(100), YR(100), YRODT{100)

3¢ P(NCRV+1l) = 1,0

L =¥

IF (M.EC.0) GO TC 45

NC = NEXFS - NEXP

IFf (L.EQ.N-1) GO TO 37

Nv = NC
3¢ IF (ABS(E(L+1)/CA(NDRV)).GT.0.001%8,0*%*NMxTOLRQ) GO TO 37
L=1-1

IF (L.EC.0) GO TO 37
NV = ANM + NC
GC TC 36



37
38

36

4C

41
42

I =1

IF (I.EQC.L+1) GO TO 42
P(ACRV+1) = P{NDRV+1)#*B(I)
1T = 1

NM = NC

IF (ABS({E(I+1)/B(II)).GT.0.001%8,.0**xNM*TOLRQ) GO TO 40
PINCRV+1) = P(NDRV+1)*X

IF {1.EC.L) GO TO 41

1 =14+1

NV = KM ¢+ NC

GC T1C 39
P(NCRV+1)
I =1+1
GG TC 38
P(NCRV+1l) = P{(NDRV+1)/8(I+1) + 1.0
IF (L.EQC.M) GO TO 45

P(ACRV+1l) = P(NDRV+1)*X*%k(M-L)

P(NDRY+1)*X/B(I+1) + 1.0

4% PCLY(NDRV+1) = PINDRV+1)*B(L+1)
CA(NCRV+1) = B(L+1)
NCRV s NLRV + 1
IF (NCRV.GT.ND) RETURN
48 ¥ = ¥=-1
DC 49 I=1,V
FK = N =NDRV -1 +1
4G BII) s B(I)*FK
GC TC 35
ENC
SUBRCUTINE COMPLX
C -~- THIS SUBROUTINE CONTAINS THE ANALYSIS PROCEDURES FOR COMPLEX
C --- RCCTS,
DCLBLE PRECISION A, ARATIO, By CA, CRATIO, D, D2, FKy P, POLY, Qy
X RA, RATIC, RRATIC, SCALE, X, XLAST, XP, XPN, XPOLY, XR,
X XRCCTy Yy YP, YPOLY, YR, YRCOT
CCMVMCN /FOLYN/ ARATIO, Dy DELTX, DX, D2y FKy I, INK, IREAL,
1 ITRIGy IW, Jy JTRIG, L, LIMIT, LTRIG, My, ML, MULT, N, NC, ND,
2 NCEG, NCRV, NEXP, NEXPS, NK, NM, NUM, DOARAT, Q, SCALE, SRATIO,
3 TCLI, TCLIQ, TOLR, TOLRQy Xy XIy XLAST, XMULT, XOLD, XPN, Y,
4 A(1CC), B{100), CA(100), CRATIOD(100), P(100}, POLY{100), RA(100),
5 RATIC(1C0), RRATIQ(100), XP(100), XPOLY(100), XR(100), XROOT(100)
6+YP(100}, YPOLY(100)s YR(100)sy YROOT(100}
C --- THE FIRST X ESTIMATE FOR THE FIRST COMPLEX ROOT IS SOME LOCAL
C --- MINIMUM CF THE ABSOLUTE VALUE OF POLY(X). LET THE 1ST Y ESTIMATE
C --- ECUAL THE SCUARE ROOT OF POLY(X).
CTHETA = 3.1415927/6.0
28C IF (IREAL.EG.-1) GO TO 528
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IF (Y.LT.0.001) Y = 0.001
IF (Y.GT.1C.0) ¥ = 10,0

IF (ABS(X!e.LTL.0.01) X = 0,01
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26C

2G6¢
3ac¢
31C

352

35¢
351

35€
35¢

JTR
ITR
IXV
NC
LTR
DC
B(1I
M=
NCR
CAL
IF
IF

TAY

X<

IC
IC

= 2

IC C

310 I=1,N

)= A(1)

NCEG

V=0

L CpPCLY

(JTRIC.GE.2) GO YC 360
(ABS(XP{1))eLTTOLI.ANDLABS{YP(1)).LT.TOLI) GO TO 360

oHn
a )

NEW X AND Y VALUES ARE CETERMINED WITH A 3 TERM COMPLEX
LCRS SERIES.

= {XPCLY(2)/B{(N))*¥2 — (YPOLY(2)/B{N))I*%2 + 2.0%({YP(1)*

X YPCLY(3) - XP(1)*XPOLY(3))/B(N)

Y<

= 2,0% (XPOLY(2)*YPOLY(2)/B(N) ~ (XP{1)*YPOLY(3) + YP(1l)*

X XPCLY{(2)))/B(N}

PHI
IF
PHI

HYP

X<
Y¢
OXT
DYT
DZ7
D27
IF¥
XQ
YQ
DZT
XNT
YNT
XCT
YCT
g =
HX
HY
IF

Y=
cC

NMET

= ATAN2(YQyXQ}
{PHI.LT.0.0) PHI = 6.2831853 + PHI
= PHI/2.0
= (XC#%2 + YQ*%2)*%0,25
= HYPRCCS(PHI)
= BYPASIN(PHI)
XPCLY(2)/B(N)
YPCLY(2)/B(N)
(XC = DXTY%*%2 +(YQ - DYT)*%2
2 5 (XQ + DXT)*%2 + (YQ + DYT)*x%2
(CZT.LE.CZT2) GO YO 352
= =-XC
= —YQ
DZ2Y2
X¢ - CXT
Y¢ - CYT
XPCLY(3)/B(N)
YPCLY(3)}/B(N)
XCT#*%2 + YDT*%2
{XNT%XDT + YNT#*YDT)/D
(YNT2XDT - XNT*YDT )/D
(ABS(FX/X) ol Toe0a1*TOLIANDABS(HY/Y )l T.0.1%TOLI) GO TO 360
(ARS(+X)eLT.1,0) GO TO 357
(ABS(X).GT.0.1) GO TO 356
= HX/EBS(HX)*0,1
TC 357
(ABS(FX/X)eGToa0e5) HX = 0.5%HX®¥ABS(X/HX)
(ABS(tY).LT.1.0) GO TO 359
(ABS{Y).CT.0.1) GO TO 358
= HY/2BS(HY)*0.1
TC 356
(ABS(FY/Y)aGT o0e5) HY = 0.5%HYRABS(Y/HY)
X + FX
Y+RY
TC 30C

W H NN

nou

STATENMENTS 360 THROUGH 535 COVER THE RATIO OF DERIVATIVES
ECC FCR COMPLEX RCOOTS.
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36C IF (ABSUIXPIND-1))4LT.0.5%TOLIQ.AND,ABS(YP{ND=1)).LT.0.5*TOLIQ)
X GC TC 370
LIFIT = C
G6C TC 38C

— WHEN LIMIT = 1, POLY{ND-1) HAS ROUNDOFF LIMITATIONS.

37C LINMIT = 1
IF (JTRIC.EQ.1) GO TC 375

- WHEN LIMIT = 4, PDLY(ND) HAS GREATER ROUNDOFF LIMITATIONS.

IF (ABS{XP(ND))eGToe0s5*¥TOLIQ.OR.ABS{YP(ND)).GT..5%¥TOLIQ) GO TOD 380
LIMIT = 4
GC TC 51z

37¢ IF (AD.GT.NDEG/2) GO TO 380
NC = ND + 1
GC TC 482

38C IF (JTRIC.EC.2) GO TO 382
CALL SCALER
IF (NK,EC.O0) GO TO 382
X = X/16.0C0%**NK
Y = Y¥Y/16.0CO0%%¥NK

JTRIC = Z
GC TC 30¢C
382 IF (ABS(XP{ND-1)).LT.0.5%TOLIQ) XP{(ND-1) = 0.5%TOLIQ
IF (ABS(YPIND-1))eLT.0.5%TOLIQ) YP(ND-1) = 0.5*TOLIQ
B = (XP(AD~1)}1%%2 + (YP(ND-1))%*2
PCLY(ND-1) = DSQRT(D)*DABS({CA{(ND-1))
IF (ABS{XP(ND))eLTe0.5*%TOLIQ) XP(ND) = 0.5*TOLIQ
IF (ABS(YPIND))eLT.0.5*%TOLIQ) YP(ND) = Q.5*%TOLIQ

D1 = (XP(NC))*%2 + (YP(ND))*%2

PCLY(ND) = DSQRT(D1)*DABS(CA(ND))

RATIC(ND-1} = POLY(ND)/POLY(ND-1)

IF (NCoeLEo2.0R.LIMIT.GT.0) GC TO 385

IF (ABS{XP{(ND=2))elLT.0.5*TOLIQ) XP(ND-2) = 0.5*%TOLIQ

IF (ABS(YP{ND=-2) )L T.O0.5%TOLIQ) YP{ND-2) = 0.5%TOLIQ

PCLY(ND-2) = DSQRT((XP(ND-2))%%2 + (YP{(ND-2))**2)*¥DABS(CA(ND-2})
RATIC(ND-2) = POLY(NC-1)/POLY(ND-2)

IF (LTRIC.NE.O) GO TC 385

ARATIC = RATIO(NC-1)/RATIO(NC-2)

IF {(ARATIO.LT.0.45) GO TO 440

IF (BRS(XP(ND=2))elTo0s6*%¥TOLIQ.ANDJABS(YP(ND~2)).LT.0,6*%TOLIQ)
X GC TC 38&5

IF (ARATIO.GT.1l.0) GC TO 455

38 PCLY(ND+1) = DSQRT((XPOLY(ND+1))*%2 + (YPOLY(ND+1))*%%2}

RATIC(NC) = POLY(ND+1)/POLY(ND)

ARATIC = RATIO(NC)/RATIO(ND-1)

RRATIC(NC=-1) = (XP(NC)*XP{ND-1)+YP(ND)*YP(ND~1))/D*CA(ND)/CA(ND-1)
CRATIG(NE=-1) = (YP(ND)*XP(ND-1)-XP(ND)*YP(ND-1))/D*CA(ND)/CA(ND-1)
L3 = (RRATIC(ND~1))**2 + (CRATIO(ND-1))%%2

RRATIC(NC) = {XP{(ND+1)%XP{ND)+YP{(ND+1)*YP(ND))/D1*CA(ND+1)/CA(ND)
CRATICGINC) = (YP(ND+1)*XP(ND) -XP(ND+1)*YP(ND))/D1*CA(ND+1)/CA(ND)
C2= (RRATIC(ND))**2 +(CRATIO(ND) )*%2

JTRIC = 2

IF (LTRIG) 389,387,395

387 IF (ITRIC.EC,1) GO YO 505
IF (ARATIC.LT.1.C) GC TO 460



[aEeXalgEeNeNe]

4CC

4CE<

41C

411

412
412

418

IF ARATIO IS GREATER THAN ONE WHERE LIMIT = 1, THE PRESENT
PCINT VERY LIKELY IS BETWEEN TWO CLOSE RQOTS. THE FOLLOWING
STATEMEKTS STEP IN A SPIRAL TO LOWER ARATIO., IF ARATIOD IS
GREATER THAN ONE WHERE LIMIT = 1, POSITIVE ANALYSIS IS NOT
PCSSIBLE. 1IN AN ATTEMPT TO ANALYZE WITHOUT THE LIMIT SOME STEPS
ARE TAKEMN IN THIS CASE TOO. HOWEVER, IT IS USUALLY NECESSARY TO
OIVICE CLT CNE ROOT AT THE BEST COORDINATES WHEN LIMIT = 1.

IF (ARATIC.LT.0.45) GO TO 490
SRATIC = SCRT{RATIO(ND)*RATIO(ND-1))
IF (SRATIC.LT.1.0¥F SRATIO = 1.0
IF (LTRIC.EC.1) GO TO 405

IF (LTRIC.EQ.2) GO TC 410

IF (LTRIC.GT.2) GC TC 415

XX = X

YY = Y

LTRIC 1

ISIGA C

CAX = ARITIC

X = X + Cs1/SRATIO

GE T1C 30C

LTRIG = ¢

QAY = ARETIC

X = X - C.1/SRATICO

Y =Y + C.1/SRATIO

GC TC 30C

Y =Y - C.1/SRATIQ

XCCN = (CAX = 0OAY1/0AX

YCCN 5 (CAX - ARATIO)/OAX

ZCCN 5 SCRT(XCON#**2 + YCON*%*2)
THETAQC = ATAN2(YCONyXCON) — CTHETA
XPCLE = X

YPCLE = V¥

THETA = CTHETA

IF (ZCON.GT.l.414) SRATIO = 10.0%SRATIO
RAC = Q.€6*ABS(THETA)/SRATIOD

DELTX = RAD*COS(THETA + THETAO)
DELTY = RAC*SIN(THETA + THETAO)
CARAT = CAX

XLAST = X

YLASTY =Y

X = XPOLE + DELTX

Y = YPOLE + DELTY

LTRIG = LTRIG + 1

GC TC 30¢C

IF (ARATIC.LE.O0.45) GO TO 49C

IF (ARATIG.GT.O0ARAT) GO TO 420

IF (LTRIC.NE.3.0R.ARATIO.GE.1.,0) GO TO 418
IF (SRATID.LT.1000.0.0R.ARATIO.LT.0ARAT=-C.01) GO TO 418
LTRIC = C

gC TC 48C

IF (LTRIC.GT.10) GO TO 425

THETA = THETA + CTHETA

RAC = 0.€*ABS(THETA)/SRATIO
DELTX = RAC*COS({THETA + THETAO)
DELTY = RAD*SIN(THETA + THETAQ)
CARAT = £ARATIC

GC TC 412

65



66

42C

43C
432

434

43¢

44C

46C
47C

48C

482

484

49C

F (LIMIT.GT.0.0R.LTRIG,EQs3) GO TO 425
XLAST

YLAST

DTHETA = ~CTHETA

LTRIC = -1

GC TC 30C

X = XX
Y = VYY
IF {LIMIT.GT.0) GO TC 512
LTRIG = ¢

ISIGN = ISIGN + 1

IF (ISIGN = 2) 430,432,434

I
X
Y

THETAQ = THETAD ~ 3.0*DTHETA
GC TC 411
THETAC = THETAO + 6.0*DTHETA
GC TC 411

IF (ISIGMN.LE.3) GO TC 438

THETAC = THETAO - 6.0*DTHETA

SRATIC = 1C.0*SRATIO

GC TC 411

THETAC = THETAO + 3.0*DTHETA

GC T1C 411

NEC = KD - 1

LIVMIT = 1

IF (JTRICL.EQ.1) GO TC 450

IF (ARS(XP(ND-1)).LT,0.6*TOLIQ«AND ABS{YP(ND-1))}.LT.0.6*TOLIQ)
X GC TC 4%0

LINMIT = €

D = (XP(AD-1))**2 + (YP(ND-1))*%*2
RRATIC(NC-1) = (XP(NC)I*XP(ND-1)+YP(ND)*YP(ND-1}))/D*CA(ND)/CA(ND-1)
CRATICINC=1) = (YP(NC)I*XP{ND-1)-XP(ND)*YP(ND-1))/D*CA(ND)/CA(ND-1)
D3 = (RRATICI(ND=-1))**2 + (CRATIO{ND-1))%*2
X X - RRATIO(NC-1)/D3

Y Y + CRATIO(NC-1)/D3

JTRIG = ¢z

GC T7C 30C

NC = ND - 1

JIRIC = 2

GC T7C 39¢C

IF (ARATIC - 0.45) 490,490,470

IF (LIMIT.EQ.O) GG TCO 480

GC TC 39C

IF (NC.GT.NCEG/2) GO TO 498

NC = ND ¢+ 1

M=V-1

DC 484 1I=1,¥

FK = N = NCRV = 1T + 1

B(I) = BI{I)*FK

GC TC 32¢

IF (RATIC(NC-1)4LT.5.0/T0OLI) GO TO 495
X = X + Co2%T0LI

Y =Y + Co2*%TOLI

GC TC 30¢C

LTRIC = €

IF (RATIC(ND-1).GT.1.0/TOLI) GO TO 520
IF (LIMIT.GT.0) GO TC 500

X = X —-RRATIO(ND-1)/C3

Y= Y + CRATIO(ND-1)/C3
GC TC 3CC



=TT

Rt W

T

i T /

50C

505

51C

C =——-

512

C ===
C ——-

52C

52¢&

C ===
C —==
C -—--

53¢

IF (ABS(RATIG(ND-1)).LT.1000.0) GO TO 512
XCLC = X

YCLC s Y

ORATIC = RATIO(NC-1)

ITRIC = 1

DELYY = C.1/0RATIO

IF {YoLT.,0.0) DELTY = -DELTY

Y =Y + CELTY

GC TC 3CC

IF (ARATIO.GE.D.45) GO TO 510

IF {(LIMIT.EC.O0) GO TC 520

IF (ARATIC.GT.SQRT(ORATIO)) GO TO 510
DELTY = Z.0%DELTY

Y = Y + CEBLTY

GC TC 30C
X = XCLD
Y = YCLC

CHECK BACK TO SEE TF ANOTHER REAL ROOT HAS BEEN FOUND.

IF (ABS(Y).GT.10.0%TOLI) GO TO 515
NE = 1

IREAL = 2

RETLRN

CIVIDE OUT CNLY ONE ROOT SINCE THE ROOT POINT COULD NOT BE
LCCATED 2S WELL AS DESIRED.

MULT = 1
XI = X
Y = Y
GC TC 54C

IF (POLY{NC-1).LT.POLY(ND+1})) GO TO 525
IF (ND.G1.2) GO TO 523

NEC = KD + 1

LTRIG = -1

GC TC 482

NC = ND - 1

GC 7C 3¢¢

IF (ABS(Y).GT.10.0%TOLI) GO TO 530
IREAL = C

XX= X

NNC= ND

RETURN

X = xX

NC = NNC

IREAL = C

THE MULTIPLICITY OF THE RDOOT AND ITS VALUE WITHIN TOLI ARF
NCw AT HANC. ESTIMATE THE Z LOCATION OF THE NEXT CLOSEST ROOT
THAT IS NOT THE COMPLIMENT OF THE PRESENT ROOT.

MULT= NO-1

XMULT= MLLT

IF (NCEG ~ 2*%MULT,.LT.3) GO TC 535

RATICR= FRATIO(NC}/(XMULT + 1.0}

RATICI= CRATIO(NOD!/(XMULT + 1.0) + XMULT/{2.0%*Y)
O0X 3 RATIOR*Y/{Y*(RATIDR**2 + RATIOI**2) + RATIOI)

67



OO0

53¢

- -

54C

54°¢

55C

55E

56C
56¢
56¢

C —-
C --- PCLYNCMI2L AND ITS DERIVATIVES IN COMPLEX NUMBERS,

68

XI = X - DX

YI = SQRT{ABS((RATIOR*Y + RATIDI*DX)*{DX*DX+ Y*Y)/(RATIOR*Y -
X RATICI*CX)))

D2= (RRATIC(MULT))**2 + (CRATIO(MULT))**%2

X= X - REATIC(MULTY)/D2

Y=Y + CRATIO(MULT) /D2

NUMEER THE ROOTS AND DIVIDE THEM OUT OF THE POLYNOMIAL FIRST
AS CCMPLEX NUMBERS TO FIND THE COMPLEX RESIDUAL., THEN GO BACK AND
DIVICE CUT THE RCOT AND ITS COMPLIMENT TOGETHER SO THAT ONLY RFAL
NUMBER ALGERRA IS USED.
DC 565 Kz1,MULT
DC 545 [=214N
RA(I) (1)
CA(I) C.C
J= J+1
XRCCT{J) = X=%SCALE
YRCCT(J) = Y*SCALE
N= N-1
DC 550 1I=24N
XPh= RA(I) + X*RA(I-1) - Y*CA{(I-1)
CA(I)= CA(I) + X*CA(I-1) + Y*RA(I-1)
RA{I)=s XFN
XR(J) (RA(N+1) + X*RA(N) -~ Y*CA(N))/A(N+1)
YR{J) (CA(N+1Y + X*CA(N) + Y%RA(N))I/A(N+1)
J= J+1
XRCCT(J) = X*SCALE
YRCCT(J) ==-Y*SCALE
N=N-1
A(2)= A(2) + 2.0*%A(1)*X
IF (N.EC.1) GO TO 562
K= N+1
BC 56€C 1=3,K
AlIN= A(I) 4+ 2,0%A(I-1)%X — A(I-2)%(X¥%k2 + Y%%2]})
XR(J) = 1.0 + {(A(N+1)%X — A(N)®(X*%k2 + Y*%2})/A(N+2)
YR(J)5 0.0
X= XI
Y= vI
IF (XeGT410.0}) X = 10.0
IF ({N+1)/2.EQ.N/2) IREAL =1
RETURN
ENC

nn

SUBRCUTINE CPOLY

THIS IS THE BASIC ROUTINE FOR FINDING THE VALUE OF THE

CCLBLE PRECISION A, ARATIO, 8, CA, CRATIO, D,y D2, FK, P, POLY, Q)
X RA, RATIQ, RRATIO, SCALE, X, XLAST, XP, XPN, XPOLY, XR,

X XRCCTy Yy YP, YPOLY, YR, YRCOT

CCMNCN /FOLYN/ ARAYIO, Dy DELTX, DX, D2, FK, I, INK, IREAL,
1 ITRIGy IW, Jy JTRIG, L, LIMIT, LTRIG, M, ML, MULT, Ny NC, ND,
2 NCEG, NCRV, NEXP, NEXPS, NK, NM, NUM, OARAT, Q, SCALE, SRATIO,



-

i SR

3 TCLI,y TCLIQ, TOLR, TOLRQy Xy XIs, XLAST, XMULT, XOLD, XPN, Y,
4 A(1CC), B(100), CA{100), CRATIO(100), P(100), POLY(100), RA(100),
S RATIC(1CO0), RRATIOD(100), XP(100), XPOLY(100), XR{100), XROOT(100)
6,YP(100), YPDOLY(100), YR(100), YROOT(100)
32C XP(NCRV+1)= 1.0
YP{NCRV+1})= 0,0
L= ¥
IF (M.EC.0) GO TO 345
NC = NEXFS - NEXP
IF {(L.EC.N~1) GD TO 328
NF = NC
325 IF (ABS(E(L+1)/CA{NDRV))«GT.0.00001*%8,0%*NM*TOLIQ) GO TO 328
L= L-1
IF (L.EQ.0) GO TO 340
NV = KM + NC
GC TC 325
326 I = 1
33C IF (l1.EG.L+1) GO TO 340
XP(NCRV+1) = XPUNDRV+1)*B(1I)
I1 = 1
NV = NC
332 IF (ABS(E(I+1!)/B(I1)).GT.0.,00001%8,0%xNM*TOLIQ) GO TO 335
XPAN= XP(ANDRV+1)%X ~ YP{NDRV+1)*Y
YP(NCRV+1)= XP(NCRV+1)%Y + YP(NDRV+1)*X
XP(NCRV+i)= XPN
IF (I.EC.L) GO TO 338

I =1+1
NV = MM 4 NC
GC TC 332

33 XPN = XP(NCRV+1)*X — YP(NDRV+1l)*Y
YP(NCRV+1) XP{NDRV+1)*Y + YP(NDRV+1)*X
XP (NCRV+1) XPN/B(1+1) + 1.0
I =1+ 1
GC TC 33¢C
33€ XP(NCRV+1l) = XP(NDRV+1)/B(I+1) + 1.0
34C IF (L.EC.M¥) GO TC 345
YP(NCRV+1) = YP{NCRV+1l)/B(L+1)
ML = M - L
DC 342 I=1,ML
XPN = XPI{NCRV+1) %X — YP(NDRV+1l)*xY
YP{NCRV+1) = XP{NDRV+1)*Y + YP{NDRV+1)x%xX
342 XP(NCRV+1)Y = XPN
YPCLY(NCRV+1l) = YPI(NDRV+1)%B(L+1)
GC TC 34¢
345 YPCLY(NCRV+1l) = YP(NDRV+1l)
YP(NCRV+1) = YP(NCRV+1)/B{L+1)
34€ XPCLY(NCRV+1l) = XP(NCRV+1)*B(L+1)
CA(NCRV+1) = B(L+1)
NCRV= NDFV+1
IF (ACRV.GT.ND) RETURN
348 M= V-1
0C 3850 I=1,.M
FK= N=-NDRV-1 + 1
35C B{I)= B{I)*FK
GC TC 32¢
ENC
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SUBRCUTIME SCALER
THIS SUBROUTINE SCALES THE POLYNOMIAL SO THE LOCAL ROOT IS

DOUBLE PREBCISION A, ARATIO, B, CA, CRATIO, Dy D2y FKy Py POLY, Q.

RA, RATIO, RRAYIO, SCALEsy X, XLAST, XP, XPN, XPOLY, XR, XROOT, Y,
YFs YPCLY, YR, YROOT
CCNVNFMCN /FOLYN/ ARATIO, D, DELTX, DX, D2y FK, I, INK, IREAL,
ITRIG, IW, Jy JTRIG, L, LIMIT, LTRIG, M, ML, MULT, N, NC, ND,
NCEG, NCRV, NEXP, NEXPS, NK, NM, NUM, OARAT, Q, SCALE, SRATIO,
TCLl, TCLIQ, TOLR, TOLRQ, X, XI, XLAST, XMULT, XOLD, XPN, Y,
A{1cc), B(100), CA(100), CRATIO(100), P(100), POLY(100), RA{100),
RATIC(1C0), RRATIO(100), XP(100), XPOLY(100), XR(100), XROOT(100)
sYP(1CO), YPOLY(100), YR{100), YROOT{(100)
NK = C

INK = 1

IF (IREAL.LE.Q0) GG TC .0

XPN = 0.,26067376*%ALOG(ABS(X))

GC TC 20

XPN 5 0.18033688*ALOCI{X*%*2 + Y*%x2)
IF (XPN.CT.0.0) GO TC 30

XPN = =-XFN
INK = -1
DC 4C 1=1,6

IF (XPN.LT.0.5.0R,IARS(NC + (NDEG*(NK + INK})/2)}.GT.20) GO TO 50
NK s NK + INK

XPh = XPN - 1.0

IF (AK.EC.0) RETURN

NC = (NCEG*NK)/2

NEXP = NEXP + NK

SCALE = 16.0DO0*%xNEXP
DC 6C I=1,N

NV = NK*{I-1) = NC
AUI) =5 A(I)/16.000%%NM
RETLRN

ENC

SUEBRCUTIMNE QED
IN THIS SUBROQUTINE THE LAST TWO ROOTS ARE CALCULATED DIRECTLY

CCLBLE PRECISION A, ARATIO, By CAy, CRATIOy Dy D2y FK,y, P, POLY, Q,
RA, RATICy RRATIO, SCALE, X, XLAST, XP, XPN, XPOLY, XR,
XRCCT, Y, YP, YPOLY, YR, YRCOT
CCMNCN /FOLYN/ ARATIO, D, DELTX, DX, D2, FK, I, INK, IREAL,
ITRIGy IWy Jy JTRIGy Ly LIMIT, LTRIGy M, ML, MULT, Ny NC, ND,
NCEGys NCRV, NEXP, NEXPS, NK, NM, NUM, 0OARAT, Q, SCALE, SRATIO,
TCLI, TCLIC, TOLR, TOLRQ, Xy XI, XLAST, XMULT, XOLD, XPN, Y,
A(1CC), B(100), CA(100), CRATIO(100), P(100), POLY{(100), RA(10D),
RATIC(1CO), RRATIN(100), XP{100), XPOLY(100), XR(100), XROOT{100)
+»YP{1C00), YPOLY{(100), YR(100), YRDOT{100)

57C IF (N-2) 600,575,580



57 X = -A(2)/A(1)
J=Jd+1
XRCCT(J) = X*SCALE
YRCCT(J) = 0.0

XR({J) = C.0
YR{J) = C.0

GC TC 60C
C ==- WHEN THERE ARE ONLY TWO ROOTS LEFT, IT IS EASIER TO SOLVE FOR
C === THEM CIRECTLY.

58C Q = A(2)4%2 ~ 4,0*%A(1)*A(3)
IF (C.LT.0.0) GO TO 590
Q@ = CSQRT(C)
J=dJd+1
Q - A{2))/(2.0%A(1))*SCALE

J = J +
XRCCT(J) = ~{Q + A(2))/(2.0%A{1))*SCALE
YRCCT(J) = 0.0
XR(J) = C.C
YR(JY = (.C
GC TC 60C
56C J = J + 1
XRCCT(J) = ~A(2)/(2.0*A(1))*SCALE
YRCCY(J) = CSQRT(-Q)/{2.0%A(1))*SCALE
XR(J)
YR{J)
Jd = J
XRCCT(
YRCCT(
XR(J) c.C
YR(J]} C.0
6CC WRITE (1k,1040)
OC 61C J=1,NUM
61C WRITE (Iw,1050) J,y, XROOT(J), YROOT(JI)}y XR(J)y YR({J)
WRITE {(Ik,1060)
104C FCRNAT (/77777 39X, 54(1H*)/39X,1H*, 52X, 1H*/39X,1H*,4X,48H%*%*x THE
CCMPUTEC RCOTS CF THE POLYNCMIAL **x% » 1H®¥ /39Xy 1H*4 52X, 1H¥/13X,
106 (1H*) /713X o 1H% 38Xy IH*94TX g 1H*94TXy1H¥/13Xy 1H*,8X 4 1H¥,4TX, 1H*,
11X,25HFOLYNOMI AL REMAINDER WHEN, 11X, 1H*/13X,10H* ROOT *,8X,
9FREAL FART,13X,9HIMAGINARY,8X,1H*,13X,21HRO0T WAS DIVIDED OUT ,
13X 1H*/13Xy 1H* 41Xy THNUMBER 5 1H*,9X, THOF ROOT,13X,12HPART OF ROOT
26X g lH*¥ 34 TX g 1H* /13Xy 1H*,8X,y 1H*4 47Xy 1H*,8X,9HREAL PART,11X,14HIMAG
TINARY PART oSXelH*/13X)1H%,8X, IHX, 47Xy 1H¥ 347X,y 1H*/13X,106(1H%) /13X,
8 IF*,8Xa1H*,4TXy 1H¥*,4TX,1H*)
105C FCRMAT (13X,1H%y2X9I13,3X,1H%*,2D02261253X,1H*,2D022,12,3X,1H*)
106C FCRNMAT (13X,1H¥3B8Xy1H*94TX91H¥34TXy 1HX/13Xy106(1H%*})
RETURN
ENC

N
N

e OO

) = XROOT(J-1)
) = -YROOT(J~1)

e +

D uN -
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Examples

THE INPUT POLYNOMIAL COEFFICIENTS.

0.10000C000C000000D 01 -0.49998599999999990 02

~C.5999¢C00CCC0Q000D 05

0.9999600000000000D0 03

THEY ARE IN GRDER IF READ IN ROWS.

-0.9999399999999999D 04 0.49936000000000000 05

Fdkkkkkkkkk ko kkokkokkkkkk Rk kR kkkokk ko kokkdok ko kb kkkok ¥k kkk¥k

*

*

* *%* THE COMPUTED ROOTS OF THE POLYNOMIAL *#*x* *

*

*

ok 3 o ok kR o ko e ok ok o ook koK g e ok ok ok sl ok o o ok o kool ok o ok ol ek skl ook ok ok sk sk ok ok ok ok sk skl ool ok e sk el o e ok e S ok ok e ok e ook ok e kol ook ok sk ok ok ok ok ok ok ok ok ok

Y
*

RCCT =*
MUMBER *
*

*

NS W~
L 2K 3 2K IR ]

*
*
&
*
*
&
*
*
*
*
*
3
* *
*

REAL PART
0OF ROOT

0.100000CC00050 Q2
0.100000€00005D 02
0.1000000000050 02
0.100000000005D 02
0.999899%99812D0 01

Exact polynomial:

0‘
C.
0.
0.
0.

IMAGINARY
PART OF ROOT

*

* * % 3

*

*

* X N ® ¥ *

POLYNOMIAL REMAINDER WHEN
ROOT WAS DIVIDED OuT

REAL PART

0.8881784197000-15
-0.1221245327090-14
-0.9992007221630~15

0.205391259556D-13

0.

P(x) = (x - 10)%(x - 9.999)

B ok ok fokok ko ok sk ok o kool ook ok ok sk kokokok R dokok okl kool dokok ok ok ook Sokokok okeR ok ok ok ki kokokokok dokok kol sokokolokkokokokdokolokkokokkok ok kok ok kokk ok ko k

0.
0.
00
0'
0.

B4 kR ko ook ok ook ok R ookl ok ok ok ok doOR ok dokokok dokok ok ok kool deokok ok ok dolokok ok dokok ook ok ok ok Jokokok kokokok ok kok ok ook fok kkok ok

TMAGINARY PART

*
x
®
*
*
*
*
x
*
*
*
*
*
*®

Comment: This problem illustrates the point that good resolution capability is maintained near multiple roots when the multi-
ple root in a group is found first,
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THE INPUT POLYNOMIAL COEFFICIENTS., THEY ARE IN DRDER IF READ IN ROWS.

0.100€0C000C0000000 01 -0.4999990000000000D0 01 0.8995960000000000D0 01 -0.6999950000000000D0 01 0.19999800000000000 01

FhEkxkkkkkokkok ok kk ok kckkkk ok kokdokok ok ok korkokok ki ok kkkk

* *

* 4%k THE COMPUTED ROOTS OF THE POLYNDMIAL #¥%x &

* *
Ao o) o o ok el ok ok ok ok ok K o ok ook ko ok ok e o o ol e ok s ok ok ok ol ol oo ok ok ook ok ol s ke ke ok ko ok ok ol s ook o ok ook ke ok ok ol ok ok kol ook ok ok kol ok e ol ok ook ko ek ke ko ool ok Rk kokokok ook
* % *
* * * POLYNOMIAL REMAINDER WHEN *
* RCOT * REAL PART IMAGINARY * ROOT WAS DIVIDED DUT *
* NUNBER * OF ROOT PART OF ROOT * *
* * * REAL PART IMAGINARY PART *
* x * x®
o okokoR koA e ol ok ok ok e o o ook o o ke e ok ok ok ok ok sk e e ol ok e e ol o o e oo o ok e e ok ke ok sk ke e ok ook ke ook s e ok ok ok ol ke ok ook ok ok ok kok dkokokok ok ek ok e ok ok koo k ko kokok kok
* * * *
* 1 e 0.999999599980D 00 0. * -0, 0. *
) 2 % 0.9999995999800 00 0. *  -0.666133814775D-15 0. *
* 3 s 0.2000000000000 01 0. * 0. 0. *
* P 0.9999900000390 00 0. *  0Oa 0. *
* * * *
Ep gkl mork kg Wk gokokok Ak ok Rk ok kkkkjokkkkokkok ok ko kx ki kkokkkkkkhkkkkdkhkkikkkhkkhkkhkkkkkkkhkhkkkhkkkkk

Exact polynomial: P(x) = (x - 1)2(x - 0.99999)(x - 2)

Comment: This problem again shows good resolution near a multiple root. However, in this case the decision between
x =1,000000 and x = 0.999993 for the location of the multiple root was barely possible or maybe even lucky.
When the correct choice was made, the computed root values were quite good.

. p§%¥:!
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THE INPUT POLYNOMIAL COEFFICIENTS. THEY ARE IN ORDER IF READ IN ROWS.

0.100C0C000C000000D0 01 -0.5000009999999999D 01 0.90000400000000000 01 -0.70000500000000000 01 0.20032020000000000D0 01

Bk ok ok ok ok okok deokokok ook ok ko ok dolok ok gk ok okokok R fokorkok ok kdkok k

* *

* ***% THE COMPUTED ROOTS OF THE POLYNOMIAL **x *

* *
L L Ty L g O 1T I T E Lty Y e T T
* x * *
* * * POLYNOMIAL REMAINDER WHEN *
* RCCT = REAL PARY IMAGINARY * ROOT WAS DIVIDED OUT *
* MUMNBER ¥ 0OF ROOT PART OF ROOT * *
* * * REAL PART IMAGINARY PART *
* » * *
R R R R Ok Rk RO OoR R OK K KRR A Ok AR R ok R R ok ook Ob Rk ok ok ok Rk ook Rk okok ko kR kR ko Rk
* * * *
x 1 * 0.100000¢66680D 01 0. * ~0.333066907388D-15 D. *
* 2 * 0,100000¢66680D 01 0. * 0.188737914186D~-14 0. *
* 3 * 0.2000000000000 01 Q. L] 0. 0. *
* 4 * 0.999996£6664000 00 O * 0. 0. *
* * * x
kb ARk AR R Kok Rk ok ok Aok ok KRR R AR K R AR Rk ok o ok R R ROk ok ok ok e gk ok ok e ok ko ke ok

Exact polynomial: P(x) = (x - 1)2(x - 1.00001)(x - 2)

Comment: This problem is similar to the previous one, In this case the wrong choice between x =1,000000 and
x = 1,0000067 was made for the location of the multiple root. Of course, the root values are not as good as

they would have been if the correct decision could have been made; but note that the centroid of the three roots
in the group is quite accurate,



Gl

THE INPUT POLYNOMIAL COEFFICIENTS. THEY ARE IN ORDER IF READ IN ROWS,

0.10C00C000£C00000D 01 -0.40000€00000000000 01 0.60€CC019999999990 01 -0,4000004000000000D 0! 0.1003002000001000D0 Ol

kokkkkkkkrkkkkkkkbkkkkkkkkgkkkkiokkkkkkkrkkrokhdkkkkkkkk

£ 3 *

* *x* THE COMPUTED ROOTS OF THE POLYNOMJAL **x *

* *
ok R ok ok ok ko ok Rk ok ok ok o ok ok ko ok okok kR ok kR R ko ko kkokok Rk ko kR bk ok kk kR k kR kR Rk hkokk kb kkkk Rk xkkEk

% *

* * L POLYNOMIAL REMAINDER WHEN ®
* RCOT =* REAL PART IMAGINARY * ROOT WAS DIVIDED OUT *
* NUNBER % OF ROOT PART OF ROOT * *
* ¥ * REAL PART IMAGINARY PART *
» * * *
Bl ok ok ko e ook ok ok ok o o e ok o o o o e ke ok ok ke ok o ok ok ok ok ke ok ok ok sk ke ool o ke s oo e ok e ke ok Kok e ke ok ok ok ok ROk R ok ke ok b sk ok Rk ok kb dkolok ok ok ko ok ko R ok k ok kkk ok k
* * * *
3 1 * 0.9999999998400 00 0.999999399333D-03 * -0.,900286225657D-16 0.433680001634D-18 *
* 2 * 0.,9999999998400 00 ~0.999999599333D-03 * -0.111022302463D-15 0. *
* 3 * 0,999999599840D 00 0.999999599333D~-03 * 0.313903891732D-14 -0.,640736713725D-12 *
* 4 * 0+9999999998400 00 -0.999999599333D~03 * 04321964677141D-14 O *
* * * *
£ 4 kbR ok Kok ok kR ok Rk ok ok ok R ok ok kR ko kool ok b ok ok ok R R ko dokookokok dokolok kb okl dok ok dok gk dokokok ok

Exact polynomial: P(x) = (x - 1 +0.0011)%(x - 1 - 0,001i)2

Comment: This problem is an illustration of muliple roots in the complex plane, The problem also shows capability to dis-
tinguish complex roots from nearly real roots.

,vﬁ%gﬁﬁﬁgk%!!
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0.10000CC00C0C0000D 01 -C.80000000000000000 01
-C.1600€0200C000399D @2

THE INPUT POLYNOMIAL COEFFICIENTS,

0.30000€60000029990 01

THEY ARE IN ORDER IF READ IN ROWS.

0.25000001999999990 02

-0.4000001200000000D 02 0.35030024000001000 02

Aok e o o o e ke o ol ok ok ok R ook ok ok ko o ok ok e ok kol ok ok ok ok ok e kool k kb ok ko ok ok

*

*** THE COMPUTED ROOTS OF THE POLYNOMIAL **x *

*

S o ok ok ok ok o ek ok e ook o ok ool ok ook ok e e o ok o okl ookl ek ook ok ok Aok kol kol kool R ok ok dkolokokok kokokok ok Rk kol ook kok ok ok ko ok

*
*
*
*
x®
|
*
*
*
*
*
*
FY
*
*

RCCT
MUNMBER

IMAGINARY
PART OF RCOT

*

* H * *

*

POLYNOMIAL REMAINDER WHEN

*®

ROOT WAS DIVIDED OUT

REAL PART

IMAGINARY PART

# 4 Wk ok koK ok o o ok ook ok ok ok ok b ko s s e ol ok sk ok ke e e ok o o ok ok ook ol ok sk ok ok ok s AR sk ko ok ok oK ok ok o ok ok ok ok s e ok ok s ok ok o o s ok ok ok ok sk o ok skl ook ok ok ke ok koo dk ke ok ok ok

NS BN

*

*

*
*
*
* REAL PART
* OF ROOT
*
*
x®
* 0.999076581776D
* 0.9996877264080
* 0.9996877264080
* 0.300000€000000
* 0.1000772982700
* 0.100077398270D
%*

00
00
00
(133
01
01

o.
0.1487630401670-02
~0.148763040167D~-02
Q.
0.9538712732370-03
-0+953871273237D-03

*

L 3K 3K 3K 2% 2%

*

0.24642490654180-14
-0.3314258028320~13
-0.343058914609D-13
-0.1998401444330~14

0.

0.

*

x

*

*

*

*

0. *
0.713466965356D~16 *
D. *
0. *
o. *
0. *
*

*

A48 ok ke odoakok ol o ok ok Kok kR ok ook ok ok ok ok ol Rk aok e ool okl ook o ook ot ok o kol ko ok ok ok ok ok ok ok kol okok ok ko ok kool dokokok ok kok gekokk

Exact polynomial:

Comment: This is the previous problem with a real root between the complex roots.

P(x) = (x - 1)(x - 1 + 0,0011)2(x - 1 - 0,0011)2(x - 3)

If the program could get the multiple

root first, the resolution would be quite good; but the program is structured to find real roots first. Since the
polynomial was found to change sign in the vicinity of the root group near x=1,0, a real root is known to exist.
The real root could not be resolved with the ratio of derivatives theory so a root was taken out near the center of

the group.
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THE INPUT POLYNOMIAL COEFFICIENTS.

0.10CC0CQ00CC00000D 01 -0,
-0.10000€0000000000D 01

-Ce

THEY ARE IN ORDER IF READ IN ROWS.

-0.100€001000001000D 07 -0,

Rk kdkkokkokok ko kkkokok R ok ko kR k ks kdokok ke ok kkkkkk ki

*

*

* *%xx THE COMPUTED ROOTS OF THE POLYNOMIAL *** *

*

*

0,1003001000001000D0 07

kAR kkkkkkkiokkp Rk kkk kb kkkpkhkkkkkkkkkdokkdkokkkhkkkkk Rk prkkkhkbkkrkkhhkkkkkrkkkhkkkghokkhkkpikkkkkikkkkkkikkkkkk
3

Exact polynomial:

* *
* * *
¥ RCOT * REAL PART IMAGINARY ¥
* MNUNRER * OF ROOT PART OF ROOT *
* * *
* * *
L
* x *
* 1 * 0.,100000C000000-02 0. *
* 2 * ~0.100000C00000D-02 Q. *
¥ 3 * -0.100000€000000 01 0. *
* 4 L] 0.,1000000000000 01 0. *
* 5 * 0.100000000000D 04 0. *
* 6 * -0.100000C000000 04 C. *
* ] [ ]
*

POLYNOMIAL REMAINDER WHEN
ROOT WAS DIVIDED DUT

REAL PART

-0.781597009336D-13
-0.222044604925D0-15
-0.222044604925D~14
-0.111022302463D-15
0.
0.

ARk kR akdokokkdkkkkkkokkkhkkkkkkokkkkkkkkkkkk ko ke ki kkkkkkkkkkkkkhkkkkdkkkiobkkkkkdkkkkkkkkokkikkkk

0.
0.
0.
0.
D.
0.

S Rkkkkkkkkkktkkkkkktkkk kR kokkkkiokkkkkkkkkkkkkk ke kk kR kd p xRk ik ok kokkokok dokdorkokokdokokiork ok kiokk kkkk

P(x) = (x+ 0.001)(x - 0.001)}(x + 1)(x - 1)(x + 1000)(x - 1000)

IMAGINARY PART

*
x
*
*
*
*
*
*
*
%«
L
*
*
*
*

Comment: This problem shows good root accuracy over a wide range of root size, This is accomplished by (1) polynomial

scaling and (2) extracting the lower magnitude roots first.




APPENDIX D

OUTLINE OF THE BASIC LOGICAL STEP PROCESS FOR THE RATIO
OF DERIVATES ANALYSIS FOR REAL ROOTS

(1) First x try at a given root
ND =2
I |P(1)] < TOLRQ and |P(2)| < 10 x TOLR, ND = ND + 1.
(2) Each new x try at a given root
(a) ARATIO = 0. 45 (Appear to be at right root multiple, (ND - 1), and zeroing in.)
(1) If |RATIO(ND - 1)| > 5/TOLR, too close to the root for good analysis.
Back away to get in the 1/TOLR to 5/TOLR range.
(2) ¥ 1/TOLR < |RATIO(ND - 1)| < 5/TOLR, make the final root correction
and divide the root out of the polynomial.
(3) If 1/TOLR > |RATIO(ND - 1)|
(a) LIMIT = 0, (|P(ND - 1)] is valid) make x correction by
1/RATIO(ND - 1) to get closer to the root.
(b) LIMIT = 1, (|P(ND - 1)| is not valid. It is set to TOLRQ, and it is
assumed to have greater magnitude than the actual value.) Set
KTRIG = 1.
(1) If |RATIO(ND - 1)] < 1000, use present x value as root
(2) If |RATIO(ND - 1)| > 1000, step away from the present x toa
point where a valid RATIO(ND - 1) is reached so the
1/RATIO(ND - 1) final correction can be made to give a better
root value.
(b) 0.45 < ARATIO < 1.0. (Either at too low ND or too far from the root yet.)
(1) ¥ ND < NDEG. Increase ND by 1 and come through the analysis again at

the same x.
(2) If ND = NDEG. Not yet near enough to root. Step closer by 1/RATIO(ND)

correction. Set JTRIG = 2.

(c) ARATIO = 1.0. (In general, between roots.) From figures 2 and 3, it canbe
seen that root candidates occur on either side of such an x location. Set
IMX = 1 to indicate the first of the two is being investigated by stepping along
the real axis with LTRIG the step counter. Step with doubled step size until:
(1) ARATIO < 0. 45

(a) LIMIT = 0. This point is a root. Do normal analysis.
(b) LIMIT = 1. Check the other point of symmetry in the effort to try to

determine which is the root.

78



(2) LTRIG =8
(a) IMSURE = 0. Give up the search for a real root here.
(b) IMSURE = 1. A real root is known to exist in this region. Continue
stepping until a XHIGH or XLOW limit is reached and then step in
the other direction.
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